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“They that go down to the sea in ships, that do business in great waters;
These see the works of the Lord, and his wonders in the deep.”

Psalm 107:23-24.



Abstract

Marine autonomous vehicles (MAVs) carrying active acoustic sensors
(echosounders) are being used for ecosystem research, but high data
volumes are presenting challenges for data storage, processing and com-
munication. One of the appeals of autonomous vehicles is directing
them to regions of interest and receiving data in real-time, but current
satellite networks have insufficient bandwidth for real-time acoustic data
transmission. We seek solutions using data compression or summarisation.

We first explore the use of generic, lossless data compression algorithms
(e.g. ZIP) and find that they do not deliver the necessary reduction in data
size. We then convert acoustic data to echograms and examine the role of
colour palettes in echogram interpretation, but image compression is still
unsatisfactory.

Using echosounder data from the Southern Ocean ecosystem at South Geor-
gia, collected by research vessels (which are easier to work with and more
readily available than MAV acoustic data), we compute acoustic summary
metrics and assess their correlation to independent ecosystem indices. There
is a strong correlation between abundance and traditional krill density es-
timates (𝑟 = 0.83, 𝑝 < 0.01) and location (centre of mass of acoustic
backscatter) and chlorophyll (𝑟 = −0.7, 𝑝 < 0.01) suggesting that acoustic
summaries could be used as concise ecosystem descriptors.

Aliased seabed is a corruption caused by acoustic reflections and its re-
moval is an example of an acoustic processing step that is currently under-
taken manually. We use modern machine learning techniques and develop



a conventional algorithm to detect aliased seabed automatically in single
frequency, split-beam echosounder data without the need for bathymetry.

Finally, we demonstrate an unsupervised acoustic data processing system
(RAPIDKRILL) that can transmit acoustically derived ecosystem indica-
tors in real-time via the Iridium satellite network. The technology is fully
autonomous, low-cost, and could be further developed for use on MAVs.
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Chapter 1

Introduction

“(this) is or should be our main scientific activity – studying
the structure of information and the structure of problem
solving processes”

John McCarthy (1974)

Sound is the most effective method for sensing the underwater marine en-
vironment (Fernandes et al., 2002). Active acoustic sampling from research
vessels is one of the principle tools for marine ecosystems analysis (Sim-
monds and MacLennan, 2005; Benoit-Bird and Lawson, 2016), but research
vessels are expensive resources. The new polar research vessel, the RRS
Sir David Attenborough, is reportedly costing £200 million (HM Govern-
ment, 2015). Ship time is also expensive, both financially (£20k - £30k per
day) and in terms of environmental impact (emissions from marine diesel
engines). Ships are also limited for safety reasons (for example, they can’t
work in very rough weather, in areas at risk from piracy, or near calving
glaciers).

Marine autonomous vehicles (MAVs) have been proposed as more cost-
effective and flexible alternatives to ships (Griffiths, 2002), and one of the
appeals of MAVs is the potential to direct them to any region of interest
and receive data in real-time. An autonomous underwater vehicle (AUV)
such as an ocean glider (Eriksen et al., 2001; Rudnick, 2016) might cost less
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than £150k. AUVs have been deployed in a growing number of marine sci-
ence studies and will continue to play an increasingly important role in the
exploration and monitoring of the oceans (Wynn et al., 2014). The ocean
glider community has grown rapidly (Testor et al., 2019). National ocean
observation agencies have invested in developing glider observing capability,
and as of 2019, there were reportedly about 400–500 gliders in the world
actively being used to better observe the ocean.

Fisheries acoustic echosounders have been used on MAVs (e.g. Guihen et
al., 2014; Benoit-Bird et al., 2018), but they generate large amounts of data
and communication bandwidth is limited in marine environments (Guihen
et al., 2014). Current practice is to store acoustic data locally for retrieval
and analysis once the MAV is recovered. This leaves missions liable to data
loss in the event of vehicle loss and limits adaptive sampling and reactive
survey management strategies. The problem is becoming more acute with
the introduction of newer broadband instruments with higher data rates.
Large acoustic data volumes are already complex and costly to maintain
(Wall, Jech and McLean, 2016), but much more data are required if we are
to address key marine science questions (Meredith et al., 2013; Kennicutt
et al., 2014). Therefore, effective methods for reducing the size of fisheries
acoustic data are urgently required.

1.1 Fisheries acoustics
Fishing is an important source of food, nutrition and income, having a total
global fish production of 171 million tonnes in 2016 (Food and Agriculture
Organization of the United Nations, 2018), but fisheries management entails
challenges including governance, sustainability, illegal fishing and climate
change (Sumaila, 2012).

Fisheries acoustics, supported by net haul data, is the principle means of
measuring animal abundance, distribution and biomass (Simmonds and
MacLennan, 2005). Echosounders use sonar (originally an acronym for
SOund Navigation And Ranging), transmitting pulses of sound and mea-
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suring the magnitude, phase and delay of received responses. The trans-
mitter and the receiver are often one and the same device, referred to as
a transducer and typically operate at frequencies between 18 and 333 kHz.
When a sound wave insonifies a target, some of the energy is absorbed, some
scattered and some is reflected back towards the transducer. The transmis-
sion time, when adjusted for hydrographic conditions, is proportional to the
range of the target. The received signal can be analysed to infer informa-
tion about biology in the water column. Echosounder operation is modelled
using the sonar equation (1.1) (Urick, 1967).

SL − 2TL + TS − (NL − DI) = DT (1.1)

SL is the source level of the transmitted signal, TL is the transmission loss
in each direction, TS is the target strength, NL is the background noise
level, DI is the directivity index of the transducer and DT, the detection
threshold. The left-hand side of the equation is the signal to noise ratio that
must reach the detection threshold for a target to be detected. All units are
in decibels (a logarithmic ratio scale) rather than SI units, because values
can be very large or very small, covering many orders of magnitude.

Beam spreading reduces the resolution of an echosounder with distance to
target. It is impossible to differentiate between individual target fish in the
far field and so volume backscatter is calculated by integrating the received
signal. This allows the intensity of animal aggregations to be measured.
A time varied gain (TVG) function is applied to amplify the signal and
compensate for range. Frequently, acoustic data are presented as echograms,
images synthesised from detected backscatter plotted by depth and time,
displaying a vertical cross-section of the water column as in Figure 1.1.

Different species exhibit different backscattering effects at different frequen-
cies depending on their biological characteristics, including presence of a
shell, swim bladder or skeleton (Korneliussen and Ona, 2003). Frequencies
can therefore be selected to enable species differentiation and identification.
Narrowband, continuous wave (CW) echosounders transmit and receive
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Figure 1.1: An example echogram depicting an Antarctic krill swarm. The
swarm is about 150 m in height and 1 km in plan. Data collected using a Sim-
rad EK60 scientific echosounder (120  kHz, ping interval 𝐼𝑇 = 2 s , nominal
speed = 10 kts) onboard RRS James Clark Ross, Cruise JR230, Southern
Ocean, December 2009.

sound pulses at single frequencies. Broadband, or wideband, echosounders
use frequency modulated (FM) pulses called chirps (originally an acronym
for Compressed High Intensity Radar Pulse), comprising a range of frequen-
cies (Fassler et al., 2015). A split-beam echosounder has a transducer that
is divided into four parts, thereby using phase difference to measure target
direction (often referred to as split-beam angle).

If a target school or swarm is homogeneous, then estimates of abundance
and biomass can be made based on knowledge of the scattering properties
of an individual animal (Horne, 2000). In practice, acoustic responses often
come from heterogeneous, unknown targets that are difficult to distinguish,
making automated species identification challenging. The problem of de-
termining characteristics of a target, based on backscatter is known as the
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inverse scattering problem.

Following an acoustic survey, echosounder data are typically post processed
using interactive software (Foote et al., 1991) to:

• convert the received signal to target strength or mean volume
backscattering coefficient;

• remove noise;
• detect and segment targets;
• estimate animal abundance.

Received signal is converted to volume backscattering coefficient (𝑆𝑣) based
on the sonar equation1. Adjustments are applied following instrument cali-
bration (Demer et al., 2015). The signal inevitably includes unwanted noise
from physical, biological and artificial sources. Along with ambient and
anthropogenic acoustic noise, ships are a source of electromagnetic noise.
Signal processing techniques (Vaseghi, 2008) are often employed for noise
reduction, removal and correction (e.g. Ryan et al., 2015).

Target detection identifies regions of interest within echograms using man-
ual, semi-automated or automated classification. Expert manual interpre-
tation of echograms is often referred to as scrutinisation. Target detection
may include:

• comparison of frequency responses to the scattering properties of dif-
ferent species (Madureira, Everson and Murphy, 1993; Korneliussen
and Ona, 2003);

• thresholding of backscattering strength;

• pattern recognition based on the shape of targets;

• application specific algorithms, e.g. shoal analysis and patch estima-
tion system (SHAPES) (Coetzee, 2000).

Finally, net hauls are typically used to validate target identification and
parameterise target strength models that are then used to convert acoustic

1The sonar equation for a Simrad EK60 echosounder is given in Appendix A.
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backscatter to animal abundance or biomass.

Fisheries acoustic surveys are typically conducted from research vessels, but
autonomous underwater vehicles (Guihen et al., 2014), unmanned surface
vessels (Manley, 2008) and fishing vessels (Godø et al., 2014; Watkins et al.,
2016) offer alternative options. AUVs in particular are often electromagneti-
cally and acoustically quieter than ships, and allow close range measurement
from within the ocean interior rather than from the surface. Moline et al.
(2015) describe a deployment of an echosounder on a REMUS 600 to exam-
ine the biology of animals in the mesopelagic zone (600–1200 m), Guihen
et al. (2014) describe the use of a Seaglider to make acoustic measurements
of zooplankton and Suberg et al. (2014) assess the use of gliders for both
passive and active acoustic sampling. Greene et al. (2014) envisage a time
when fleets of gliders contribute to acoustic biomass surveys. Real-time com-
munication is key to this vision, enabling coordinated activity and dynamic,
adaptive sampling (Maxwell et al., 2015).

In this thesis, we consider Antarctic krill as an ecosystem exemplar and use
echosounder recordings from around South Georgia in the South Atlantic,
where krill is the dominant species.

1.2 Antarctic krill
Antarctic krill, Euphausia superba is a type of zooplankton found in the
Southern Ocean. It is one of the most abundant species on Earth, supply-
ing the Southern Ocean fishery (Nicol and Foster, 2016) and performing
a central role in Sub-Antarctic food webs (Trathan and Hill, 2016). Zoo-
plankton are known to contribute to the biological carbon pump (Giering
et al., 2014) and are vulnerable to climate change (Flores et al., 2012). De-
spite these factors, the species remains under sampled, and production and
biomass estimates remain uncertain (Atkinson et al., 2009).

The distribution of Antarctic krill is bounded by the polar front; therefore,
krill habitat is estimated to cover some 19×106 km2 (Atkinson et al., 2009).
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Krill behaviour is complex, making it hard to build statistical models of
distribution and abundance. Surveys of Antarctic krill typically take place
from research ships. Direct sampling using net hauls allows accurate species
identification, but suffers from bias due to avoidance, which is dependent
on net type and depth (Everson, 2008). Acoustic sampling uses backscatter
as a proxy for abundance and allows sampling over large areas but can be
ambiguous in terms of species identification (Demer and Conti, 2005). Net
sampling is often used to ground-truth acoustic sampling (Siegel, 2016) and
current krill estimates show a total biomass of 379 million tonnes. (Atkinson
et al., 2009).

The Western Core Box (WCB) is an annual ship-based survey, conducted
near South Georgia by the British Antarctic Survey, collecting echosounder
and net haul data (Fielding et al., 2014). The data are primarily used to
study Antarctic krill (Figure 1.2), and we make extensive use of these data
in this thesis.

The Commission for the Conservation of Antarctic Marine Living Resources
(CCAMLR) is responsible for management of the Antarctic krill fishery and
for setting annual, precautionary catch limits (currently 5.6 million tonnes).
The fishery is the largest by tonnage in the Southern Ocean (approximately
300 kilo-tonnes annually), with krill being used for aquaculture, fish bait and
nutritional supplements for human consumption. Its management regime
faces challenges in terms of increasing demand, new harvesting technology
and environmental change (Nicol and Foster, 2016).

The management of the Antarctic krill fishery, as implemented by
CCAMLR, requires large scale biomass estimates. At the Scotia Sea scale,
this is undertaken as part of multinational, multi-ship surveys and has
been completed three times (1981, 2000 and 2019: Trathan et al., 1995;
Watkins et al., 2004; Krafft et al., 2019). In between these large surveys,
the interannual context has been sampled at the regional level (Reiss et
al., 2008; Fielding et al., 2014; Krafft et al., 2018). As the cost of ship
time increases, managers are looking for alternative platforms to undertake
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Figure 1.2: The Western Core Box survey. Transects are shown in red and
we refer to them as 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 4.1 and 4.2 from west to east
respectively).

acoustic surveys, including fishing vessels (Godø et al., 2014; Watkins et
al., 2016) and autonomous vehicles (Guihen et al., 2014).

1.3 Ocean gliders
Autonomous Underwater Vehicles (AUVs) are underwater marine au-
tonomous vehicles that are driven through the water by propulsion systems
controlled and piloted by an onboard computer, and manoeuvrable in
three dimensions (Von Alt, 2003). They are distinguished from remotely
operated vehicles (ROVs) by being untethered. The operational character-
istics of AUVs allow them to explore under ice (Asper et al., 2011), work
in dangerous areas (Piontkovski et al., 2017) and explore phenomena from
different vantage points (Guihen et al., 2014).
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Ocean gliders are a self-contained, battery powered AUVs that use small
changes in their buoyancy to affect a vertical movement. (Eriksen et al.,
2001; Rudnick, 2016). This method is more power efficient than traditional
engine propulsion systems, extending endurance and allowing them to serve
as a quiet platform for acoustic applications (Guihen, 2018). Horizontal
motion is achieved by adjusting the glider’s attitude (moving the battery to
affect the centre of gravity) and using the hydrodynamic body shape and
wings to provide lift and to glide. This results in a sawtooth trajectory of
dives that allows profiling of the water column. Gliders are a derivative
of Argo floats, a global array of free-drifting floats that profile the water
column (Roemmich et al., 2009).

A wide range of sensor packages have been integrated with gliders allowing
measurement of ocean variables including temperature, salinity, dissolved
oxygen, fluorescence, photosynthetically available radiation (PAR), current,
nitrate, turbulence, acidity and acoustics. These variables allow physical,
chemical and biological ecosystem indicators to be tracked over time to
assess changes and trends in marine ecosystems. Ocean gliders are increas-
ingly being seen as an important component of the Global Ocean Observing
System (Liblik et al., 2016).

When underwater, a glider is unsupervised, relying only on instructions from
an onboard, embedded microcomputer system. Manual, operator interven-
tion occurs when the glider is at the surface and able to communicate. In
the case of the Seaglider2, an operator or “pilot’ ’ connects via the Internet
to a base station using a secure shell3, sending command files and retrieving
sensor sample files. The glider communicates with the base station using
the Iridium satellite communication network (Pratt et al., 1999). Pilots are
usually keen to minimise the time that a glider is at the surface to reduce the
risk of collision and damage. This limits the opportunity for transmission of
sensor data. Data are postprocessed using motion sensor information to cor-

2Seaglider Product Specification, https://bit.ly/2V8LJnd, accessed April 2020.
3SSH(1) BSD General Commands Manual, https://man.openbsd.org/ssh, accessed

April 2020.
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rect for the flight model, sensor lag and differences in upcast and downcast
sensor attitude.

A key consideration for any glider mission is endurance (how long can the
mission last and how far can the glider go?). These factors are limited by
battery power and current drain. The power budget is consumed by the
control, buoyancy variation, sensor and communication subsystems. The
probability of a shallow underwater glider surviving a thirty-day mission
without a premature mission end is 0.59 (Brito, Smeed and Griffiths, 2014).
The risk of data loss due to vehicle failure gives rise to a cost-benefit judge-
ment involving value of data, cost of communication, power for onboard
processing and time at surface. In general, we would like to transmit a
backup of the data as quickly as possible.

1.4 Maritime data communication
The fundamental problem of communication is that of reproducing at one
point, either exactly or approximately, a message selected at another point
(Shannon, 1948). Figure 1.3 depicts a generalised communications system
where messages flow from an information source and a transmitter converts
them to a signal on a noisy channel. A receiver receives the signal, repro-
duces the message and delivers it to a destination. Throughput is limited by
the bandwidth of the channel which is limited by noise. Data compression
and decompression can be implemented at the transmitter and the receiver
respectively.

The size of data is usually measured in bits (binary digits). A Kilobit
(Kb) is 1024 bits (note the capital K) and a kilobit (kb) is 103 bits. The
bandwidth of a channel (the data transmission rate) is measured in bits
per second (bps), Kilobits per second (Kbps, 1024 bps), kilobits per second
(kbps, 103 bps) or Megabits per second (Mbps, 106 bps). A byte is 8 bits,
a Kilobyte (KB) is 1024 bytes, and a kilobyte (kB) is 103 bytes. This can
be a source of confusion, but the rule is that K means 1024, k means 103, b
means bit and B means byte. All other prefixes correspond to the SI system.
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Figure 1.3: Schematic diagram of a general communications system (from
Shannon, 1948).

Unfortunately, there is a woeful lack of accuracy, precision and consistency
in equipment specification and literature when quoting data rates.

The principle options for marine telemetry systems are underwater acoustic
communication within the ocean interior, or radio communication from the
surface (Bekkadal, 2009). Sea water is a very difficult medium to use for the
transmission of signals (Hilliard Jr, 1960). Radio frequency and light waves
are strongly attenuated by water and acoustic communication is hampered
by complex channel characteristics such as fading, multipath propagation,
variable delay, refraction and attenuation (Catipovic, 1990; Akyildiz, Pom-
pili and Melodia, 2005). Acoustic modems offer point-to-point communica-
tion of up to a few kilometres, and network topologies can be formed by
means of repeater nodes (Sozer, Stojanovic and Proakis, 2000), but band-
width is low (typically less than about 10 kbps) and communication suffers
from propagation delays.

Radio frequency (RF) communication at the surface, requires line-of-sight
between the transmitter and the receiver. Very High Frequency (VHF, 30
– 300 MHz) and below are impractical for AUVs because of antenna size
(typically > 1 m) but Ultra High Frequency (UHF, above 300 MHz) solu-
tions exist, offering communication of up to about 20 kbps) over distances
less than about 10 km with antennae measured in centimetres (e.g. Free-
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wave4). Satellite communication systems typically use higher frequencies
with smaller antennae (e.g. L band, 1 – 2 GHz). The satellite azimuth must
be high enough not to be affected by sea surface waves. For this reason, polar
orbiting satellites are often more advantageous than geostationary satellites,
particularly when operating at high latitudes such as the Southern Ocean
(Maral and Bousquet, 2011). As an example, Iridium data modems5, provid-
ing a circuit-switched channel with a bandwidth of 2.4 Kbps, are installed
on both Seaglider and Slocum gliders. New technology could improve band-
width (e.g. Iridium are currently testing their new Certus 9770 transceiver
which could provide a 35-fold speed increase), but there are physical limits
to antenna size and stability, and the applicability for autonomous vehicles
remains to be seen.

Broadband Internet systems are also available, but these can be expensive
and typically require dishes or large antenna systems to be mounted at a
high elevation, making them unsuitable for MAVs. Terrestrial mobile data
networks such as GPRS are only accessible from some coastal waters.

1.5 Data compression
In a digital system, messages, consisting of symbols for transmission, are
typically represented as a sequence of bits. Data compression (or more
correctly, source coding) reduces the bandwidth required to transmit data
by encoding information using fewer bits than the original representation
(MacKay, 2003). Information theory is the mathematical study of infor-
mation coding (Shannon, 1948). An encoding may be lossless (in which
case no information is lost and the process is reversible), or lossy (in which
case information judged to be of low importance is irreversibly removed).
Some scientists use the terms data thinning or data decimation to mean
data reduction; both can be regarded as forms of lossy compression. The
compression ratio is the ratio of the size of the uncompressed data to the

4https://www.freewave.com/, accessed April 2020.
5Iridium Communications Inc, https://www.iridium.com/, accessed April 2020.
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size of the compressed data.

The Kolmogorov complexity of a message is the length of the shortest com-
puter program in any programming language that produces that message
as output, and it can be shown to have the highest (optimal) compres-
sion ratio (Kolmogorov, 1963). The decoding of a message requires the
receiver to have both the transmitted program, and an interpreter for the
predetermined programming language. The programming language can be
a general-purpose programming language, or it can be a language optimised
for a specific domain. Unfortunately, there are no known algorithms for find-
ing Kolmogorov complexity and therefore, no general methods for optimal
compression.

Compression algorithms can use the fact that not all symbols occur
equiprobably and the most frequent can be coded with shorter bit se-
quences (e.g. Huffman encoding, Huffman, 1952). Lempel-Ziv methods
look for repeated symbol sequences and use pointers to remove repetition
(Ziv and Lempel, 1977, 1978). There is also a large literature covering
image compression, with algorithms such as JPEG (Wallace, 1992) being
commonly used in digital cameras and PNG6 being used for Internet
applications.

1.6 Science as a form of lossy data compres-
sion

We live in an era of big data, in which scientific experiments routinely
require collection and analysis of large data sets (Mayer-Schönberger and
Cukier, 2013). The Problem, Plan, Data, Analysis and Conclusion (PP-
DAC) structure has been suggested as a way of representing the scientific
problem-solving process (Wild and Pfannkuch, 1999; Spiegelhalter, 2019).
Problems are posed, experiments are planned, data are collected and anal-

6Portable Network Graphics (PNG) Specification, W3C/ISO/IEC version, http://ww
w.libpng.org/pub/png/spec/iso/, accessed April 2020.
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ysed, leading to conclusions that may in turn generate further problems
(Figure 1.4).

Problem

Plan

Data

Analysis

Conclusions

Problem definition,
understanding.

Collection,
management,
cleaning

Experimental design,
methods.

Interpretation,
conclusions

Exploration,
correlation,
clustering,
graphing,
summarisation

Figure 1.4: The PPDAC model of statistical thinking in empirical enquiry,
adapted from Wild and Pfannkuch (1999).

The Analysis and Conclusion phases of PPDAC can be considered as a
form of data compression. Analysis usually entails methods such as group-
ing (clustering), classification, correlation and graphing - all forms of data
summarisation. Results are interpreted, leading to conclusions which are
often simply confirmation or rejection of hypotheses. As an example, con-
sider the existence or otherwise of the Standard Model Higgs boson particle
in physics. The ATLAS detector at the Large Hadron Collider recorded
300 trillion proton–proton collisions. Following extensive computation and
analysis, it was concluded that the new particle exists (Aad et al., 2012).
This can be seen as a lossy compression ratio of > 300 trillion!

1.7 Our research question
We ask: “Can we find acoustic data compression and summarisation al-
gorithms that could be deployed alongside echosounders on marine au-
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tonomous vehicles, to deliver real-time ecosystem indicators?”

1.8 Thesis structure
In Chapter 2, we explore the use of generic data compression algorithms
(e.g. ZIP) to reduce the size of acoustic data. We convert acoustic data
to echograms to look at image compression, examining the use of colour
palettes in echogram interpretation (Chapter 3).

We go on to consider the possibility of processing and summarising acoustic
data onboard marine autonomous vehicles, which poses three key problems:

1. Whilst summary acoustic metrics have already been proposed,
it is not clear which are descriptive of marine ecosystems;

Using echosounder data from the Southern Ocean ecosystem at South Geor-
gia, collected by research vessels (which are easier to work with and more
readily available than MAV acoustic data), we compute acoustic metrics
and assess their correlation to independent ecosystem indices (Chapter 4).

2. Current acoustic processing techniques require supervision by
experts and are difficult to automate;

Aliased seabed is a corruption caused by acoustic reflections from the seabed.
Aliased seabed detection and removal is an example of an acoustic processing
step that is currently undertaken manually. We use modern machine learn-
ing techniques and a conventional algorithm to detect aliased seabed in sin-
gle frequency, split-beam echosounder data without the need for bathymetry
(Chapter 5).

3. Current acoustic processing software is typically desktop-
based, interactive and and unsuitable for unsupervised, embed-
ded, autonomous operation.

We demonstrate an unsupervised acoustic data processing system (RAPID-
KRILL) that connects to an echosounder and reports real-time, acoustically
derived metrics from ships of opportunity (e.g. fishing vessels) using the

15



Iridium satellite network (Chapter 6). The technology is fully autonomous,
low-cost, and could be further developed for use on marine autonomous
vehicles.

Finally, we present conclusions and suggestions for future work (Chapter
7).
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Chapter 2

Compression of fisheries
acoustic data

“The most important tool of the theoretical physicist is his
wastebasket.”

Albert Einstein

In this chapter, we consider whether general-purpose compression tech-
niques are effective for reducing the size of fisheries acoustic data.

2.1 Introduction
Echosounders are routinely used in fisheries acoustics to survey marine
ecosystems. (Simmonds and MacLennan, 2005; Benoit-Bird and Lawson,
2016). Sound pulses (“pings”) are transmitted towards a target and the in-
tensity and phase angle of the received signal are measured, integrated and
recorded. Data are stored as a matrix of signal samples indexed by depth
(or range) and along track distance. Echosounders are usually deployed on-
board research vessels, but fishing vessels (Godø et al., 2014; Watkins et al.,
2016) and marine autonomous vehicles (Guihen et al., 2014; Mordy et al.,
2017) are increasingly being used to extend spatial and temporal sampling.

Large acoustic data volumes, amounting to many terabytes, are already
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costly and complex to maintain, with manual processing becoming over-
whelming and impractical (Wall, Jech and McLean, 2016). Echosounders
generate large amounts of data, and this is a particular challenge for marine
autonomous vehicles (MAVs), where communication networks have limited
bandwidth. If an echo sounder is operated with a transmit pulse interval
(𝐼𝑇 ), and generates 𝑛 samples per ping, with 𝑘 bits per sample then the
data rate 𝑅, usually measured in kilobits per second (kbps), is given by
(2.1). New broadband sensors such as the Simrad WBT Mini can produce
as much as 70 GB per day (6.48 Mbps, Benoit-Bird et al., 2018) but satel-
lite communication channels typically only have a bandwidth of 2.4 kbps
(e.g. Iridium).

𝑅 = 𝑛 × 𝑘
𝐼𝑇

(2.1)

Whenever a communication system is bandwidth limited, there can be only
two possible solutions: add more bandwidth or reduce the amount of data
transmitted. Increasing bandwidth to ocean areas is often expensive or
impractical. Electromagnetic (radio frequency) communication is not pos-
sible underwater where acoustic communication is also short range or very
low bandwidth. Above water, radio frequency communication is difficult
because of the need to raise an antenna above the waves. Satellite commu-
nication is possible, but high bandwidth requires stable antenna systems
which are unsuitable for platforms smaller than a ship. We would therefore
like to reduce the size of acoustic data for storage and transmission.

At the time of writing, four terabyte, USB (Universal Serial Bus) disk drives
are routinely used to transfer acoustic data between shipborne echo sounders
and data centres. The principal communication between MAVs and control
stations is by low earth orbit satellite communication. The glider must be
at the surface to transmit, where it is vulnerable to collision with shipping
or sea ice and could drift away from intended waypoints. These risks, and
the cost of maritime data communication, require that we minimise time at
the surface and consequent transmission times. Current practice is to store
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data locally for retrieval and analysis once the MAV is recovered, leaving
missions liable to data loss in the event of vehicle loss (Guihen et al., 2014).

There are at least three studies that have looked at compression of acous-
tic data: Amblas et al. (2016) explore lossless compression of multibeam
echosounder data and show compression ratios of up to 1.8. Wu, Zielinski
and Bird (1997) claim lossless compression ratios of between 2 and 3 for
hydroacoustic image data. Beaudoin (2010) applies JPEG compression to
Simrad echosounder data, reporting compression ratios of up to 20 using
lossy compression.

In this chapter we attempt to quantify current and near future requirements
for data compression in fisheries acoustics. We apply conventional lossless
compression algorithms to data collected from a Simrad EK60 echosounder.
We convert data to matrices of power and assess the effects of numeric preci-
sion on survey results and data size. Finally, we convert data to echograms
and assess the efficacy of image compression algorithms.

2.2 Methods
To estimate current and near future data collection rates for echosounders,
we considered three representative instruments:

1. An Imagenex, single beam, 120 kHz CW ES853 echosounder mounted
on a Kongsberg Sea Glider (Guihen et al., 2014). The device measured
backscatter to a range of 100 m with 0.5 m bins, generating 200 7 bit
values per ping at a pulse interval, 𝐼𝑇 = 0.6 s. This echosounder was
selected for its compact size and modest power requirements, but lack
of split-beam or broadband capability limits its usefulness;

2. A Simrad EK60, split-beam echosounder mounted on a research vessel
(e.g. Fielding et al., 2014). The EK60 stores each sample as a pair of
short (two byte) integers (a total of four bytes) for each transducer fre-
quency. Bin size is variable, but a typical pulse duration of 1.024 ms
gives a range resolution of 19.2 cm (Simrad, 2012). Assuming single
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frequency operation, this yields 5200 samples for 1000 m with a trans-
mit pulse interval, 𝐼𝑇 = 2 s. Despite being obsolete, this echosounder
is still widely used on research vessels;

3. A Simrad EK80 broadband echosounder where each sample is four
complex numbers (one for each of the four transducer quadrants).
Each complex number consists of two 32 bit floating point values. A
sample is therefore represented as 4 quadrants × 2 × 4 bytes = 32
bytes. Again, we assume single frequency operation with 5200 samples
per ping and a transmit pulse interval, 𝐼𝑇 = 2 s. This echosounder
architecture is state-of-the-art, with EK80 being fitted to new research
vessels and WBT Mini to a wide range of MAVs.

To test various compression strategies, we used 125 Simrad EK60 38 kHz
transects recorded from the Western Core Box survey (2003 - 2019, Field-
ing et al., 2014, Section 1.2). Simrad echosounder data are usually stored
in RAW format (Simrad, 2012), which can also contain metadata, and data
from other instruments (e.g. a Global Positioning System receiver). To avoid
our study being instrument specific, we converted each acoustic transect to
a matrix of volume backscattering coefficient (𝑆𝑣) using SimradEk60.jl1.
Calibration corrections (𝑆𝑎) were determined and applied annually using
standard sphere techniques (Demer et al., 2015). Sound speed (𝑐) and ab-
sorption (𝛼) were determined from cruise CTD stations undertaken during
each cruise (Francois and Garrison, 1982), averaged over the top 250 m of
the water column. Finally, we saved the transect matrices in uncompressed
binary format.

Many data analysis tools (e.g. Python2, MATLAB3 and R4) now use 64 bit,
double precision floating point numbers by default. If this precision could
be reduced to 32 bits, then total uncompressed data size would immediately
be halved (Overton, 2001). To test the effect of varying numeric precision,

1https://github.com/EchoJulia/SimradEK60.jl, accessed April 2020.
2https://www.python.org/, accessed April 2020.
3https://www.mathworks.com, accessed April 2020.
4https://www.r-project.org, accessed April 2020.
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we computed mean volume backscattering coefficient (𝑆𝑣) for each transect
using both 64 bit and 32 bit floating point arithmetic and noted the maxi-
mum numerical error (The SimradEK60.jl software can be compiled to use
either 64 bit or 32 bit floating point types).

To test the efficacy of general-purpose compression programs, we applied
zip (version 3.0), bzip2 (version 1.0.8), xz (version 5.2.4) and gzip (version
1.10) to each of the transect binary files, comparing compression ratios. The
CPU execution time was measured for each program (User + Sys time) for
all 125 transects on a Linux AMD64 system, kernel version 5.3.0-26.

Echograms quantise acoustic data (usually volume backscattering coeffi-
cient, 𝑆𝑣 or target strength (TS) by means of a colour map and are therefore
a form of lossy compression. We used EchogramImages.jl5 to convert tran-
sects to echograms (scale bar −95 dB and −50 dB). We tested two common
colour schemes: Simrad EK500 (12 colours) and Viridis (256 colours). The
resulting echograms are images which we converted to PNG and lossless
JPEG to explore the additional compression achieved by image compres-
sion algorithms.

2.3 Results
Table 2.1: Echosounders ordered by data generation rate. For example, an
EK60 generates 83.20 kilobits per second, which is 37.44 Megabytes per
hour. This data rate is 33.85 times higher than the capacity of an Iridium
channel and would require a compression ratio of 406 to transfer two hours
of samples in ten minutes. The Iridium data rate is shown for comparison
purposes.

Echosounder kbps MBph × Iridium Compression
ES853 2.33 1.05 0.95 11
Iridium 2.46 1.11 1.00 12
EK60 83.20 37.44 33.85 406
EK80 665.60 299.52 270.83 3250

5https://github.com/EchoJulia/EchogramImages.jl, accessed April 2020.
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The Imagenex echosounder generates data at a rate of 2.3 kbps, the Simrad
EK60 83.2 kbps and the Simrad EK80 665.6 kbps. Sending two hours of
samples in ten minutes over an Iridium channel would require a compression
ratio of 406 for EK60 and 3250 for EK80 (Table 2.1).

The maximum error when computing mean volume backscattering coeffi-
cient (𝑆𝑣) using 32 bit arithmetic compared to using 64 bit arithmetic was
1.8e−5. It is unusual for 𝑆𝑣 to be quoted to more than two significant figures
after the decimal point, and so we proceeded to use a 32 bit representation
for all 𝑆𝑣 samples.

Of the general-purpose file compression programs tested, xz provided the
highest compression ratio (2.21) but had the slowest execution time (14 431 s;
Table 2.2). Zip was the fastest (1409 s), but had the lowest compression ratio
(1.19). Image compression algorithms achieved higher compression ratios,
with PNG performing better that JPEG in both cases. Of the echogram
image compression methods, echograms using the EK500 colour scheme,
saved as PNG had the highest compression ratio (23.72).

Compression ratios are not the same across transects (e.g. EK500 PNG,
23.72 ±0.48), showing that compression is dependent on the size and nature
of the data itself. Similarly, echogram compression ratios are dependent on
the choice of colour palette.

2.4 Discussion
All three echosounders that we considered generate data at a higher rate
than can be reasonably transmitted by an Iridium satellite modem. Al-
though the Imagenex echosounder only generates 2.3 kbps (compared with
a 2.4 kbps channel), a glider can only transmit data whilst at the sea surface
and has to transmit other mission data too (e.g. GPS and other instrument
data). Such an arrangement would limit data collection to about half the
vehicle’s deployment time. Pilots are usually keen to minimise the time that
a glider is at the surface to reduce the risk of collision and damage, and to
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Table 2.2: Mean compression ratios for general-purpose file compression
tools and echogram image processing applied to 125 38 kHz acoustic tran-
sects from the Western Core Box 2003 - 2019. The mean transect uncom-
pressed file size was 273.09 MB ±13.62 MB.

Method Compression Ratio CPU time (s)
Zip 1.19 ±0.01 1409
Gzip 1.19 ±0.01 1456
Bz2 1.44 ±0.01 3198
Xz 2.21 ±0.03 14431
EK500 JPG 5.01 ±0.1 2885
Viridis JPG 6.6 ±0.12 2968
Viridis PNG 10.47 ±0.24 5700
EK500 PNG 23.72 ±0.48 3325

maximise dive time and data collection.

None of the compression ratios seen in this study is sufficient to allow data
communication across an Iridium 2.4 kbps channel, except perhaps EK500
PNG. The highest lossless compression ratio achieved with the general-
purpose file compression programs was 2.21 (using xz). These results show
similar compression ratios to earlier studies (Wu, Zielinski and Bird, 1997;
Amblas et al., 2016). The best image compression ratio of 23.72 was
achieved with an echogram using EK500 colours and PNG format (Table
2.2). However, this would still require a glider to be at the surface for about
one hour in every 24 purely for the transmission of echosounder data, which
would increase its susceptibility to currents and collision.

Whilst literature such as Wall, Jech and McLean (2016) raises legitimate
concerns about increasing acoustic data volumes, Equation 2.1 shows that
the growth is linear (𝒪(𝑛)) with data size being directly proportional
to the number of samples. Data rates are larger for more sophisticated
echosounders (6.48 Mbps for the EK80), but this is not the crisis that
would have been the case had we seen polynomial or exponential growth.
Whilst the number of echosounders in use is likely to grow through more
widespread sampling, this growth seems unlikely to be polynomial or
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exponential either.

The compression ratios required in practice may be larger than those shown
in Table 2.1. Benoit-Bird et al. (2018) reported that a glider deployed,
Simrad WBT broadband echosounder can generate 70 GB per day with two
transducers collecting CW samples. This is an order of magnitude more in
terms of data rate than our EK80 estimates above. However our estimates
only included single frequency samples and did not include auxiliary data
such as GPS or other instrumentation. Even so, the results highlight the
large difference between required data compression ratios and those offered
by general-purpose data compression techniques.

Single precision floating point arithmetic gave sufficient precision when cal-
culating mean volume backscattering coefficient, providing an immediate,
effective compression ratio of two. Double precision floating point numbers
are stored using 64 bits (eight bytes), whilst single precision floating point
numbers use 32 bits (four bytes). This data reduction not only halves the
size of memory and disk required to store acoustic data, it also reduces
acoustic data processing time by halving input and output.

The compression ratio depends on the size and nature of the data itself. Ta-
ble 2.2 shows variability in compression ratios between transects. Compres-
sion algorithms identify repetition in the data and can therefore compress
homogenous sections more effectively than inhomogeneous sections. This
makes it hard to know exactly what compression ratios can be achieved in
practice.

Echogram image compression ratios depends on the choice of colour palette.
The EK500 echogram stored as PNG resulted in a compression ratio of 23.72,
whilst the Viridis echogram PNG resulted in only 10.47. The EK500 colour
scheme has only 12 colours (compared to Viridis 256) and this reduced
variability obviously yields higher compression at the expense of precision.
We might have expected JPEG to yield higher compression ratios than PNG,
but JPEG is optimised for photographs (where there is usually a wide range
of luminance in the detail) and here we are using it for echograms (where
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there is a limited range of colours). Our results suggest that echograms can
provide an effective form of lossy compression, but raise questions about
the number and type of colours that should be used (a theme we explore
further in Chapter 3).

Whilst compression ratio is a measure of the effectiveness of a compression
algorithm, other factors, including time and resources required for execution,
should also be considered. Designers of embedded systems for autonomous
underwater vehicles must be mindful of power requirements and it may be
desirable to trade off compression ratios against computation and communi-
cation resources. All the compression schemes tested enable more efficient
and cost-effective disk storage, allowing scientists to more easily capture
larger data sets.

It is clear that lossy compression is required if we are to dramatically in-
crease compression ratios, but decisions about which data could be dis-
carded are highly application specific. For example, an application for esti-
mating krill biomass might require krill swarm dimensions, but would not
need pelagic fish schools. In science, there is a danger that data are dis-
carded that may prove useful for subsequent analyses. Ideally, all data
should be preserved, with lossy compression only being employed for expe-
diency of results.

2.5 Next steps
In this thesis, we make extensive use of echograms for acoustic data presen-
tation and inspection, and so we would like to resolve the questions raised
in this chapter concerning echogram colour maps. In the next chapter we as-
sess echogram colour maps and optimise the visual appearance of echograms
before going on to look at acoustic data summarisation in Chapter 4.
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Chapter 3

Colour maps for fisheries
acoustic echograms

“The chief function of colour should be to serve expression.”

Henri Matisse

In the last chapter, we converted acoustic data to echograms and used im-
age compression to reduce data storage and transmission time. Echograms
are widely used in fisheries acoustics, but the visual appearance and effec-
tiveness of echograms depends on their colour map. In this chapter, we
optimise our choice of echogram colour maps before using echograms for
further data analysis.

This chapter is based on a paper of the same name, published in ICES
Journal of Marine Science (R. E. Blackwell et al., 2019).

3.1 Introduction
Echosounders are routinely used in marine science to survey the underwa-
ter environment. Sound pulses (“pings”) are transmitted into the water
and reflections from targets (e.g. seabed, plankton, zooplankton, fish) are
measured, integrated and recorded. Signals are typically recorded as power,
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in watts, and converted to target strength (TS), or volume backscatter-
ing strength (𝑆𝑣), in decibels, to study the distribution, abundance and
behaviour of animals (Simmonds and MacLennan, 2005).

Acoustic data are recorded as a matrix of signals 𝑋(𝑖, 𝑗) where 𝑖 is the
range index and 𝑗 the along-track distance index. 𝑋(𝑖, 𝑗) can be mapped
to pixels c(𝑖, 𝑗), where c(𝑖, 𝑗) is usually a three-dimensional colour vector,
to form a digital image (an echogram) using colours drawn from a colour
map. A colour map, 𝐶 = {c1, c2, ..., c𝑘}, is an ordered set of 𝑘 colours
used to assign numbers to colours such that c(𝑖, 𝑗) ∈ 𝐶. The range of 𝑋
to be visualised (determined by the scale bar) is divided into 𝑘 equal bins,
and pixels are mapped accordingly. The available radiometric resolution
of an echogram reduces as 𝑘 reduces, and an echogram often has lower
dynamic resolution than the original acoustic data. Changing the colours
in an echogram affects the visual appearance of its content in the same way
that changing the colours in a photograph would change the appearance of
its subject.

The first fisheries acoustic echograms were published in the 1930s
(e.g. Sund, 1935). Early systems used “wet” paper processes to record
measurements and these produced monochromatic images (Mitson, 1983).
By the 1980s, computers could store echograms in memory and display
them on monochrome cathode ray tubes (CRT) or print them using dry
photographic processes. By the 1990s, echograms could be rendered in
colour using colour CRT monitors, and the Bergen Echo Integrator (BEI)
included purposely designed colour maps (Foote et al., 1991). The Simrad
EK500 was one of the first scientific echosounders to have an attached
colour display, but the hardware had only four bit planes, of which one was
used for fixed lines, limiting the number of available colours to 12. Colour
dot-matrix printers and pen plotters were available, but also had a limited
range of colours (e.g. Figure 3.1).

As the number of available display colours increased, 𝑘 increased, enabling
the Simrad EK80 colour map based on EK500. As of 2019, we now have
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Figure 3.1: An echogram dating from 1992, rendered using a colour plot-
ter. Note the limited colour and spatial resolution. Data recorded using a
Simrad EK400 (120 kHz) connected to a Biosonics Echo Signal Processor,
during cruise D198, RRS Discovery, Bellingshausen Sea, 1992 (Archives ref:
2001/5).

high definition monitors that use light emitting diodes (LEDs) and colour
laser printers; both can render echograms in millions of colours. This gives
rise to a wide variety of colour map options (Figure 3.2).

Acoustic data analysis still entails echogram interpretation by skilled fish-
eries acousticians. Echograms are postprocessed to remove unwanted signal
and noise (Ryan et al., 2015), before identifying acoustic targets and quan-
tifying distribution, abundance and behaviour. Thresholding is a common
way of discriminating targets from surrounding backscatter, with thresholds
set based on visual interpretation of echograms and the scattering charac-
teristics of target species, validated by target fishing (Korneliussen, 2018).
Whilst automated, unsupervised algorithms exist for some aspects of fish-

28



Figure 3.2: Echograms depicting an Antarctic krill swarm plotted using a
selection of colour maps. The swarm is about 150 m in height and 1 km in
plan. Data collected using a Simrad EK60 scientific echosounder (120 kHz,
ping interval 𝐼𝑇 = 2𝑠, nominal speed = 10 kts) onboard RRS James Clark
Ross, Cruise JR230, Southern Ocean, December 2009.

eries acoustic data processing, much work is still undertaken manually us-
ing graphical, interactive software such as Echoview® (Echoview Software
Pty Ltd), Large Scale Survey System (LSSS) (Korneliussen et al., 2016),
MOVIES (Trenkel et al., 2009) or ESP3 (Ladroit 2017)1. It is therefore im-
portant that echogram data are displayed faithfully, clearly and consistently,

1https://sourceforge.net/projects/esp3, accessed April 2020.
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and that colour maps are chosen to optimise human-computer interaction.

The visual representation of data has a powerful effect on the perception and
interpretation of the structure of those data (Rogowitz, Treinish and Bryson,
1996). Our ability to perceive the details of a visual scene is determined by
the relative size and contrast of the detail present (Campbell and Robson,
1968). Studies in medical imaging have shown that poorly designed colour
maps can lead to imprecise readings and inaccurate interpretation (Borkin et
al., 2011). Colour map choice affects the visual appearance of an echogram
(Figure 3.2), but the colour map used by a particular fisheries acoustician
may be based on a number of factors: the colour map may have been
chosen to optimise a particular detection, comparison, or estimation task;
the display software may only provide a default colour map or a limited
choice; the user may have been trained using a particular colour map and
now have experience, familiarity and learned expertise specific to that map;
or the user may simply have a subjective preference.

Pseudo coloured images are used to show metric (or value) information as
well as form (shape and structure) (Ware, 1988). In psychophysical tests,
greyscale colour maps better revealed form, whilst colourful maps better
revealed metric. To create a colour map that reveals both metric and form,
the colour sequence should increase monotonically in luminance and use a
range of hues. The hues provide accurate readings from a key, while the
luminance conveys form. Greyscale is therefore best for detecting shape in
echo traces, and colour for presenting backscattering strength (Foote et al.,
1991). Based on Ware (1988), Foote et al. (1991) combined greyscale and
red-blue as a colour map option for BEI and this is the origin of the default
echogram colour map in LSSS.

Colour maps may be either qualitative (sometimes called categorical) (where
colour represents a category but does not imply magnitude), sequential
(where colour implies ordering and magnitude), diverging (where colour im-
plies ordering and magnitude in two directions from a central value) or cycli-
cal (where colour implies ordering in “wrap around” data) (Brewer, 2015).

30



Echograms of 𝑆𝑣 or TS which are intended to represent the magnitude of
acoustic backscatter should therefore use a sequential colour map.

The human vision system is complex and there is a huge literature on colour
perception (for a primer, see Baylor, 1995). Colour is not intrinsic to ob-
jects, and we perceive colour using reflected light which varies depending
on lighting conditions. Light energy entering the eye has two fundamental
dimensions: intensity, which determines brightness, and frequency which
determines colour. The eye consists of rods and cones which are sensitive
to intensity and frequency respectively. We can perceive millions of colours
(Judd and Wyszecki, 1975), but different people perceive colour in different
ways as demonstrated by the 2015 internet sensation known as #thedress
where some audiences reported dress colours as blue and black, and others
as gold and white (Gegenfurtner, Bloj and Toscani, 2015).

The “Which Blair Project” provides a quick visual test for evaluating colour
maps (Rogowitz and Kalvin, 2001). In psychophysical testing, the percep-
tual quality of colour maps was assessed by using them to render a photo-
graph of a human face. A strong correlation was found between the per-
ceived naturalness of images, luminance monotonicity and the suitability of
colour maps for rendering continuous scalar data.

Colour spaces organise colours within a vector space. For example, the
RGB colour space organises colours according to their red, green and blue
components. Standard RGB (sRGB) is commonly used for computer dis-
plays which mix red green and blue light additively on a black screen to
produce images. CMY colour spaces are used for print media, mixing cyan,
magenta and yellow ink on a white page to produce colours subtractively.
These colour spaces are device-dependent, with different screens, cameras,
scanners and printers producing different colours. A colour space is said
to be perceptually uniform if a small perturbation to a component value
is equally perceptible across the range of that value (Poynton, 1996), how-
ever neither RGB nor CMY colour spaces have this property. The CIELAB
colour space was designed by the International Commission on Illumina-
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tion (CIE) to have approximate perceptual uniformity by describing any
colour in a device independent manner using three dimensions, 𝐿∗ for light-
ness (black-white), 𝑎∗ for green-red and 𝑏∗ for blue–yellow (Robertson, 1977,
1990). Euclidean distances in CIELAB colour space can be used to approx-
imate the magnitude of perceived colour differences making it useful for the
measurement and comparison of colours (Brainard, 2003) and the percep-
tual uniformity of colour maps.

Colour maps such as Rainbow have been widely criticised for a lack of percep-
tual uniformity (Borland and Ii, 2007). MathWorks™ changed its default
MATLAB™ colour map from Rainbow to Parula in 2014 (revised in 2017)
and Matplotlib (Hunter, 2007) to Viridis in 2016. Both Parula and Viridis
have been carefully designed for colour contrast consistency, accessibility
for viewers with red-green colour-blindness, and legibility when printed in
monochrome. Some scientific disciplines employ specialised colour maps
tailored to the subject matter. Many oceanographic publications use cmo-
cean (Thyng et al., 2016) and the Brewer colour maps are commonly used
in geography (Brewer, 2015). These colour maps have also been designed
explicitly with colour contrast consistency in mind.

Based on the evidence from Ware (1988), Brewer (2015) and Borland and Ii
(2007), we conclude that echogram colour maps for displaying quantitative
acoustic backscatter should be colourful, sequential and perceptually uni-
form. In this chapter, we measure whether fisheries acoustic colour maps
are colourful, sequential and perceptually uniform using CIELAB. We com-
pare our results with colour maps used by the wider scientific community
and make recommendations concerning colour map selection for the presen-
tation and interpretation of fisheries acoustic echograms.

3.2 Materials and methods
A selection of fisheries acoustic echogram colour maps was obtained from
echosounder data collection and processing systems. These include BioSon-
ics DT4, Simrad EK500, Simrad EK80, Furuno FQ80, HTI, Kaijo and Sonic
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from Echoview, and LSSS, the default colour map from the Large Scale Sur-
vey System. It is common for echogram colour maps to have dark and light
variants by using black or white as a background colour. These background
colours were excluded from our analyses.

Data science tools include modern colour maps which were designed for
colour contrast consistency, and so for comparison, we also selected Matter
from cmocean, Parula from MATLAB, and Viridis from matplotlib. A
subsampled version of Viridis having 12 colours, {c1, c24, c47, ..., c254} called
Viridis12 was created to test the effect of reducing the number of colours
(𝑘). All colours were converted into CIELAB colour space using the Colors.jl
software library2.

The colour maps from Rogowitz and Kalvin (2001) were recreated and in-
cluded in our analyses.3 For LAB Grayscale, Heated Body, Rainbow, HSV
Grayscale, HSV Saturation (increasing) and HSV Saturation (decreasing),
we recreated the colour maps programmatically in accordance with their
descriptions in the paper. For Isoluminant Rainbow and LAB Isoluminant
Saturation, we scanned the colour maps from the paper, adjusted 𝐿∗ to
ensure isoluminance, and interpolated to find 100 colours for each map.

One hundred journal papers matching the search term “fisheries echogram”,
published after 2009 in the ICES Journal of Marine Science, were examined
(Appendix H). Echogram colour maps were identified by visual inspection.
A paper was attributed to a colour map if that colour map occurred at least
once in the paper. If a paper contained more than one colour map, it was
attributed to all colour maps present.

Colourfulness is the subjective human perception of the variety and inten-
sity of colours in an image, with greyscale images being not colourful and
rainbow images being highly colourful. We determined the colourfulness of
each colour map by using it to plot a sample echogram (Figure 3.2) and
measuring the colourfulness of the resulting image according to Hasler and

2https://github.com/JuliaGraphics/Colors.jl, version v0.9.5.
3The colour maps used in The Which Blair Project are no longer available and were

reconstructed following advice from the original author.
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Süsstrunk (2003). They used non expert viewers to rate the colourfulness
of a set of natural images and fitted a statistical model yielding a metric
𝑀̂ (3) described in (3.1), where 𝑅 is the image red channel (0-255), 𝐺 is the
green channel (0-255) and 𝐵 is the blue channel (0-255). 𝑀̂ (3) = 0 means
not colourful, 𝑀̂ (3) = 15 slightly colourful, 𝑀̂ (3) = 33 moderately colourful,
𝑀̂ (3) = 45 averagely colourful, 𝑀̂ (3) = 59 quite colourful, 𝑀̂ (3) = 82 highly
colourful and 𝑀̂ (3) = 109 extremely colourful.

𝑀̂ (3) = 𝜎𝑟𝑔𝑦𝑏 + 0.3 ⋅ 𝜇𝑟𝑔𝑦𝑏,
𝜎𝑟𝑔𝑦𝑏 = √𝜎2𝑟𝑔 + 𝜎2

𝑦𝑏,

𝜇𝑟𝑔𝑦𝑏 = √𝜇2𝑟𝑔 + 𝜇2
𝑦𝑏,

𝑟𝑔 = 𝑅 − 𝐺,

𝑦𝑏 = 𝑅 + 𝐺
2 − 𝐵

(3.1)

A colour map is sequential if it is monotonically increasing in luminance
(Rogowitz and Kalvin, 2001; Brewer, 2015). The Spearman rank correla-
tion coefficient can be used to measure the monotonicity of an ordered set
of numbers. We used the Spearman rank correlation coefficient of lightness,
(𝑟𝑠({c𝐿∗ ∣ c ∈ 𝐶}, {1...𝑘}) if 𝜇∆𝐿∗ > 0) to measure monotonicity and thus
determine whether a colour map is sequential. A colour map is sequen-
tial and monotonically increasing in lightness if 𝑟𝑠 = 1 and sequential and
monotonically decreasing in lightness if 𝑟𝑠 = −1.

The CIEDE2000 colour distance metric (Δ𝐸∗
00) is a refinement to the

CIELAB Euclidean distance metric (Witt, 2007). We defined a colour map
as perceptually uniform if CIEDE2000 colour distances were uniform across
the colour map range. The Pearson correlation coefficient of CIEDE2000
colour distances, from the first colour to each of the other colours in turn
𝜌({Δ𝐸∗

00(c1, c) ∣ c ∈ {c2, ..., c𝑘}}, {1...𝑘 − 1})), was used to determine
linearity of colour distance. A colour map was defined as perceptually
uniform if 𝜌 = 1.
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3.3 Results
Of the 100 journal papers analysed, 78 contained data from a Simrad in-
strument. Echoview was used for analysis in 48 papers, LSSS in 11 and
MOVIES in 4. The EK500 (34%) and “Rainbow” (16%) colour maps were
the most frequently used for echograms, followed by LSSS (8%), “Greyscale”
(7%) and “Other” (14%).

Figure 3.3: A human face rendered using a selection of colour maps. Accord-
ing to Rogowitz & Kalvin (2001), those images that appear most natural
use colour maps better suited to visualising continuous scalar data.

Each colour map under test was used to render a photograph of a human
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face as in the Which Blair Project (Rogowitz and Kalvin, 2001) (Figure 3.3).
There is a large variation in the naturalness of the images and the results
appear to be consistent with Rogowitz and Kalvins’ observation that LAB
Grayscale and Heated Body produce more natural images than either HSV
Saturation Increasing or Rainbow.

Figure 3.4: Lightness by colour sequence for each colour map. 𝑟𝑠 is the
Spearman rank correlation coefficient (1.0 or -1.0 for a sequential colour
map).
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Table 3.1: Colour maps ordered by lightness monotonicity (𝑟𝑠) and per-
ceptual uniformity (𝜌). The first column is the colour map name with a
superscript indicating its origin ((1) from Rogowitz and Kalvin(2001), (2)
a fisheries acoustic colour map or (3) a modern colour map designed for
colour contrast consistency). 𝑘 is the number of colours; 𝑀̂ (3) is colourful-
ness; 𝑟𝑠 is the Spearman rank correlation coefficient of lightness (𝐿∗) (-1.0
or 1.0 indicates a sequential colour map) and 𝜌 is the Pearson correlation
coefficient of CIEDE2000 colour distance (1.0 indicates perfect perceptual
uniformity).

Name k 𝑀̂ (3) 𝑟𝑠 𝜌
LAB Iso. Sat.1 100 35 0.96
Iso. Rainbow1 100 62 0.67
EK802 64 151 0.02 0.28
Furuno FQ802 11 186 0.03 0.78
EK5002 12 186 0.06 0.26
HTI2 31 235 0.06 0.24
Rainbow1 100 236 -0.21 0.46
Sonic2 96 193 0.25 0.34
Kaijo2 15 165 -0.53 0.83
DT42 16 198 0.65 0.70
LSSS2 52 79 -0.94 0.95
HSV Sat. Dec.1 100 93 -1.00 0.94
Heated Body1 100 82 1.00 0.97
HSV Sat. Inc.1 100 125 1.00 0.98
Parula3 64 158 1.00 0.98
LAB Grayscale1 100 0 1.00 0.99
Viridis3 256 95 1.00 0.99
Viridis123 12 91 1.00 0.99
HSV Grayscale1 100 0 1.00 0.99
Matter3 256 83 -1.00 1.00
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All of the fisheries acoustics colour maps bar LSSS are extremely colourful
(𝑀̂ (3) > 109). LSSS is quite colourful (𝑀̂ (3) = 79). Parula is the most
colourful of the modern colour maps, being extremely colourful (𝑀̂ (3) =
158), but most are quite colourful (𝑀̂ (3) > 59) or highly colourful (𝑀̂ (3) >
82). The Rainbow colour map is the most colourful (𝑀̂ (3) = 236) and the
isoluminant colour maps the least colourful (LAB Isoluminant Saturation,
𝑀̂ (3) = 35 and Isoluminant Rainbow, 𝑀̂ (3) = 62) not including the grey
scales. In general, fisheries acoustic colour maps are more colourful than
modern colour maps.

Using 𝑟𝑠, we determine those colour maps which are sequential (Table
3.1, Figure 3.4). None of the fisheries acoustic colour maps is sequential,
but LSSS comes closest (𝑟𝑠 = −0.94). Of the sequential colour maps,
Heated Body, HSV Saturation (Increasing), Parula, LAB Grayscale, Viridis,
Viridis12 and HSV Grayscale are monotonically increasing (𝑟𝑠 = 1.00).
Whereas Matter and HSV Saturation (Decreasing) are monotonically de-
creasing (𝑟𝑠 = −1.00).

None of the fisheries acoustic colour maps is perceptually uniform (𝜌 = 1),
but LSSS comes closest (𝜌 = 0.95). Matter is perfectly perceptually uniform
(𝜌 = 1.00), but LAB Grayscale, Viridis, Viridis12 and HSV Grayscale are
approximately perceptually uniform (𝜌 ≈ 1.00).

The colour maps contain between 11 and 256 individual colours (𝑘), with
Furuno FQ80 having 11 colours and Viridis having 256 colours. Notably,
reducing the number of colours in the Viridis colour map to 12 (Viridis12),
did not change whether it was sequential, did not reduce its perceptual uni-
formity, and had only a small effect on its colourfulness. The colourfulness
(𝑀̂ (3)) of a colour map is not proportional to its length (𝑘).

3.4 Discussion
The purpose of an echogram image is to effectively convey acoustic informa-
tion to a human viewer. Echosounder receivers are sensitive and have a very
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high dynamic range. It is typical to use a logarithmic scale (decibels) to
make power measurements easier to work with, and to allow sufficient colour
contrast between values in an echogram display. The logarithmic scale is
monotonically increasing and it is reasonable to require equal perceptual
contrast increments per decibel across the colour map range.

The choice of colour map has a substantial effect on the appearance of an
image and the detail revealed (Campbell and Robson, 1968). The Which
Blair Project used a subjective test (image naturalness) to assess colour
maps (Rogowitz and Kalvin, 2001); in this chapter, colour maps are or-
dered by objective measures of lightness monotonicity (𝑟𝑠) and uniformity
of colour distance (𝜌) with consistent results. We use these measurements
to compare colour maps from fisheries acoustics with modern colour maps
designed for colour contrast consistency.

Although sequential colour maps are widely recommended for visualising
continuous scalar data such as 𝑆𝑣 and TS (Rogowitz and Kalvin, 2001),
none of the fisheries acoustic colour maps tested is sequential. When a
colour map is not sequential, greater-than and less-than relationships are
not immediately evident (Borland and Ii, 2007). Non-sequential colour maps
can introduce false gradients that can covertly exaggerate features in some
regions, whilst minimising features elsewhere (Thyng et al., 2016).

Rainbow echogram colour maps are still used in the fisheries acoustic lit-
erature (16%), despite being widely criticised for their lack of perceptual
uniformity (Borland and Ii, 2007). In our tests, some fisheries acoustic
colour maps (Simrad EK80, Simrad EK500, HTI and Sonic) were shown to
have even lower perceptual uniformity than the Rainbow colour map used by
Rogowitz and Kalvin (2001). Like Rainbow, these fisheries acoustics colour
maps lack perceptual ordering, have uncontrolled luminance variation and
non-data dependent gradients. Non perceptually uniform colour maps can
hinder the effective visualisation and interpretation of data by confusing,
obscuring and misleading (Borland and Ii, 2007).

The Simrad EK500 scientific echosounder was introduced in 1989 and is
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now obsolete, but the EK500 colour map is still widely used (34%), and
was even applied to Simrad EK80 data in one of our examined papers. The
EK500 colour map appears to be closely related to Rainbow and may have
been intended to make colour bars easy to read. Despite its popularity and
familiarity, we have shown that the EK500 colour map is not sequential
(𝑟𝑠 = 0.06) and has highly uneven perceptual contrast over its range (𝜌 =
0.26). Echoview was used in 48% of the papers, but EK500 is not the
Echoview default, suggesting that users are making a conscious choice of
colour map. Simrad instruments were used in 78% of the papers examined,
and this may help to explain the continued popularity of EK500.

Of the fisheries acoustics colour maps tested, LSSS is closest to being sequen-
tial (𝑟𝑠 = −0.94) and perceptually uniform (𝜌 = 0.95). LSSS originates
from the combined greyscale and red-blue colour map designed by Foote
et al. (1991). Like LSSS, modern colour maps such as Parula and Viridis
are designed to combine monotonic luminance with a range of hues (Ware,
1988), but are more colourful, truly sequential and have better perceptual
uniformity.

Sequential colour maps with high perceptual uniformity tend to have lower
colourfulness than perceptually uneven colour maps, e.g. Viridis (𝑀̂ (3) = 95)
versus Rainbow (𝑀̂ (3) = 236). It is natural to want colourful echograms, but
the lack of perceptual ordering of the rainbow colours red, orange, yellow,
green, blue, indigo and violet, gives rise to a trade-off between colourfulness
and perceptual uniformity. It would be difficult or impossible to simply
adjust existing echogram colour schemes to improve their perceptual uni-
formity. All of the fisheries acoustics colour maps, except LSSS, are highly
colourful and this may help to explain their continued popularity.

The number of colours (𝑘) in the colour maps tested did not influence
whether colour maps were sequential, their degree of perceptual uniformity
nor the colourfulness of resulting echograms. Our methods work irrespec-
tive of 𝑘. As 𝑘 decreases so does the radiometric resolution of resulting
images (compare Viridis12 to Viridis in Figure 3.3). As 𝑘 decreases so does
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the number of colours on the scale bar which may make it easier to read
(compare Viridis12 to Viridis in Figure 3.2). However, care must be taken
when using colour maps with reduced 𝑘 that reduced radiometric resolution
in echograms does not hide important detail.

More than half of the colour maps tested have increasing lightness (𝑟𝑠 > 0)
but Kaijo, LSSS and Matter have strongly decreasing lightness (𝑟𝑠 < −0.5).
This causes them to look much more like colour negative film images in
Figure 3.3. Whilst both monotonically increasing and monotonically de-
creasing colour maps are considered sequential, it is interesting to compare
Viridis and Matter in Figure 3.2. The former uses lightness to indicate more
intense volume backscatter at the bottom of the krill swarm, whilst the lat-
ter uses darkness to imply density. For echograms that have been processed
for noise removal, monotonically increasing colour maps may be more suited
to computer screens (less bright light), and monotonically decreasing colour
maps more suited to print media (less ink).

Greyscale colour maps are used in the literature that we analysed (7%), but
it is unclear whether the objective was to portray morphological aspects of
the data (Ware, 1988) or simply to reduce printing costs. Unlike greyscale,
Viridis and Parula, some fisheries acoustics colour maps are highly non-
sequential (𝑟𝑠 −→ 0) and do not maintain legibility when reproduced in
monochrome.

About eight percent of men and 0.4 percent of women have colour vision
deficiency (CVD) (Spalding, 1999). When we presented our preliminary
results at the Working Group for Fisheries Acoustic Science and Technol-
ogy (WGFAST) in 2019, a number of fisheries acousticians told us that
they had CVD and preferred greyscale colour maps for accessibility. The
greyscale colour maps tested here are sequential (𝑟𝑠 = 1.00) and approxi-
mately perceptually uniform (𝜌 ≈ 1.00). Tufte (1983) suggests that colour
often generates graphical puzzles and that grey shades may be superior
for the presentation of quantitative data; however, there is evidence that
we can only distinguish limited shades of grey and potentially millions of
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colours (Poynton, 1996). Greyscale echograms may be a good choice for
accessibility, but Viridis and Parula have been designed with CVD in mind,
and users without CVD may benefit from a wider colour palette. Colour
maps can be adjusted for observers with particular CVD variants (Jefferson
and Harvey, 2006).

Echograms are sometimes used to show regions segmented according to
categories (e.g. fish, zooplankton, seabed or noise) or multi-frequency char-
acteristics (e.g. Jech and Michaels, 2006). Such qualitative data require
qualitative colour maps (Brewer, 2015). Qualitative colour maps are pur-
posely designed to be colourful and use high perceptual contrast between
colours to distinguish categories. Where categorisation is based on signal
intensity (e.g. target strength or acoustic backscattering strength), there
is a natural desire for the colour map to be both sequential and qualita-
tive. Our results show that perceptually uniform colour maps tend to be
less colourful than non-perceptually uniform, but that colour maps such as
Parula can provide a compromise.

Split-beam echosounders, described by Foote, Aglen and Nakken (1986),
also record phase angle data diverging from 0°, which can be displayed
using a diverging colour map. DT4 has a single turning point and is thus
diverging, but its lightness profile is not symmetric (Figure 3.4). Despite
having three turning points, the Sonic colour map has a sharp central peak
in its lightness profile and could be used as a diverging colour map (Figure
3.4). However, Sonic is not perceptually uniform and better diverging colour
maps are widely available. Good diverging colour maps are symmetrical,
having exactly one turning point in their lightness profile, and have colourful,
sequential and perceptually uniform legs (e.g. cmocean balance).

As echosounder resolution and precision increases, echogram data contain
ever more detail (e.g. the Simrad EK80 has a range resolution of centimetres,
Lavery et al., 2017). The echogram shown in Figure 3.1 has low spatial reso-
lution and low radiometric resolution, but a modern computer monitor may
display more than 240 dots per inch with millions of colours. Colour maps
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should be chosen carefully to make best use of the available display capabil-
ity; however, we have reached a point where the human vision system may
not be able to discriminate all the features present in an echogram image.
As range and power resolution increases, the use of computational methods
for echogram segmentation, classification and interpretation (Korneliussen,
2018) will likely become more effective than manual methods.

The CIELAB colour space and CIEDE2000 colour distance measurements
are approximations of human visual perception. The effectiveness of a colour
map is also influenced by factors including simultaneous contrast (Ware,
1988), lighting environment (Baylor, 1995) and the eye’s dark adaptation.
Still, the methods presented here offer simple, reliable and objective mea-
sures for assessing and comparing colour maps.

None of the colour maps tested is extremely colourful, sequential and per-
ceptually uniform, so there is no single colour map that meets every re-
quirement. Modern colour maps are available from other scientific disci-
plines (e.g. Thyng et al., 2016; Hunter, 2007; Brewer, 2015) that are not yet
widely implemented in fisheries acoustic software, but may offer additional
choice and advantages over traditional fisheries acoustic colour maps. We
hope that Table 3.1 and the methods herein will allow fisheries acousticians
to make more informed decisions when selecting echogram colour maps.

3.5 Recommendations
When using echograms to detect morphological structure in acoustic data,
sequential, perceptually uniform greyscale colour maps are recommended.

When using echograms to present quantitative data (e.g. 𝑆𝑣 or TS) colour
maps should be colourful, sequential and perceptually uniform. Of the
fisheries acoustic colour maps tested, LSSS comes closest to being sequen-
tial and perceptually uniform. However, modern colour maps have been
specifically designed for colour contrast consistency, accessibility for viewers
with red-green colour-blindness, and legibility when printed in monochrome
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(e.g. Viridis, Parula).

When using echograms to present diverging data (e.g. split-beam angle),
diverging colour maps should be used, with symmetrical legs, each being
colourful, sequential and perceptually uniform.

When using echograms to present categorical data (e.g. fish schools, seabed),
qualitative colour maps should be used.

44



Chapter 4

Acoustic indices of ecosystem
variability at South Georgia

“If you torture the data long enough, it will confess.”
Ronald H. Coase, Essays on Economics and Economists.

In Chapter 2 we used compression algorithms to reduce acoustic data size,
but compression ratios were unsatisfactory. We are forced to try summaris-
ing acoustic data, a theme we explore in this chapter.

4.1 Introduction
Marine ecosystems vary over multiple spatial and temporal scales (Dickey,
1991). Ecological processes are influenced by local weather parameters and
large-scale patterns of climate variability, affecting marine biology and fish
stocks through both direct and indirect pathways (Stenseth et al., 2002).
Identifying change and the drivers of change in ecosystems is key to their
study and management.

Climatic drivers of variability in the Southern Ocean include the South-
ern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO)
(Meredith et al., 2008). Positive SAM is associated with warm winds di-
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rected towards the South Pole, decreased sea ice (Stammerjohn et al., 2008),
and increased ocean mixing (Lovenduski and Gruber, 2005). The El Niño–
Southern Oscillation (ENSO) exerts an irregular, periodic influence that
increases temperature and reduces sea ice near the Antarctic Peninsula.

The Southern Ocean is undergoing major changes as a result of anthro-
pogenically driven climate change (Rogers et al., 2019). Increasing ocean
temperatures, ocean acidification, changes in sea ice characteristics and con-
sequent impacts on marine biota have been observed for at least the last
thirty years (Constable et al., 2014). The ecosystem is complex with signif-
icant regional variability and non-linear, indirect biotic relationships that
are difficult to quantify (Gutt et al., 2015).

Antarctic krill Euphausia superba (henceforth krill) is the dominant mid-
trophic-level species in the Southern Ocean (Murphy et al., 2016). It is prey
to a wide range of predators including whales, birds, seals and fish (Trathan
and Hill, 2016). Krill help to remove carbon dioxide from the atmosphere as
part of a biological carbon pump, consuming phytoplankton in surface wa-
ters and repackaging this carbon into rapidly sinking faecal pellets (Giering
et al., 2014; Belcher et al., 2019). Seventy percent of the Southern Ocean
krill population is contained in the Atlantic sector (Atkinson et al., 2008),
with the population originating from the Peninsula (Hofmann et al., 1998),
the region showing the greatest temperature increase and sea ice reduction
(Meredith et al., 2008). Krill is also the target of the largest Southern Ocean
fishery, being used for aquaculture as well as human consumption (Nicol and
Foster, 2016). These combined pressures have led ecologists to highlight the
vulnerability of krill and the Southern Ocean ecosystem (Schiermeier, 2010;
Flores et al., 2012).

The British Antarctic Survey has been measuring krill in the South Geor-
gia region since 1996 (Fielding et al., 2014). The Western Core Box (WCB,
Section 1.2) is an annual ship based survey undertaken each austral summer
collecting echosounder and net haul data. It is primarily used to make an es-
timate of krill density (KLD). However, this creates just a single value each
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year to represent a population of krill with complex patterns of distribution
and abundance. We would like to study the whole ecosystem rather than
a single species. Alternative acoustic indices have been proposed including
density (mean volume backscattering strength), abundance (area backscat-
tering strength), location (centre of mass), occupied area (proportion oc-
cupied), evenness (equivalent area) and aggregation (index of aggregation)
(Urmy, Horne and Barbee, 2012). These measures (henceforth Echometrics)
have been successfully applied to mooring data at Monterey Bay (Urmy,
Horne and Barbee, 2012) and survey data in the Gulf of Mexico (D’elia et
al., 2016) to describe ecosystems in terms of both animal abundance and
behaviour. In these cases, Echometrics revealed strong seasonal cycles and
variability in diurnal vertical migration.

In this chapter we ask whether Echometrics are effective indicators of ecosys-
tem variability at South Georgia. We compute Echometrics from WCB data
(2003 to 2019) and compare our results to the recently updated, krill den-
sity time series after Fielding et al. (2014). Finally, we examine correlation
between Echometrics and independent indices of local environmental, and
large-scale climatic forces.

4.2 Materials and methods

4.2.1 Western Core Box data

Western Core Box data (Simrad EK60, 120 kHz, 2003 - 2019) were selected
to allow us to study acoustic trends over nearly two decades (Table 4.1). The
survey area was originally chosen for its proximity to concurrent predator
studies at South Georgia. Each survey consisted of eight 80 km transects
run in daylight hours, alternately in on and off shelf directions at a nominal
speed of 10 knots with a fixed ping rate, 𝐼𝑇 = 2 s (Figure 1.2). Power
settings varied between years but were consistent within year.
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Table 4.1: Western Core Box cruises by survey year.

Year Cruise Date Transects Notes
2003 JR82 Feb 2003 7 Transect 3.2 corrupted
2004 JR96 Jan 2004 8
2005 JR116 Jan 2005 8
2006 JR140 Jan 2006 8
2007 JR162 Dec 2006 6 Reduced due to weather
2008 No survey
2009 JR188 Jan 2009 8
2010 JR228 Dec 2009 8
2011 JR245 Dec 2010 8
2012 JR260 Jan 2012 8
2013 JR280 Dec 2012 8
2014 JR291 Dec 2013 8
2015 JR304 Dec 2014 8
2016 JR15002 Dec 2015 8
2017 JR16003 Dec 2016 8
2018 JR17002 Jan 2018 No EK60 120 kHz data
2019 DY098 Jan 2019 8

4.2.2 Acoustic data processing

Data were first converted to volume backscattering coefficient (𝑆𝑣) using
EchoJulia1. Off effort acoustic data (i.e. data collected between transects)
were discarded. Calibration corrections (𝑆𝑎𝑐) were determined annually
using standard sphere techniques (Demer et al., 2015). Sound speed (𝑐)
and absorption (𝛼) were determined from cruise CTD stations undertaken
during each cruise (Francois and Garrison, 1982), averaged over the top
250 m of the water column. Calibration corrections are given in Appendix
B.

Before calculating Echometrics, noise was detected and removed using
EchoPy2 (an assessment of the impact of noise removal on results is given
in Section 4.6.2). Impulse Noise (IN), defined as noise “spikes” of less than

1https://github.com/EchoJulia/SimradEK60.jl, accessed April 2020.
2https://github.com/bas-acoustics/echopy, accessed April 2020.
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one ping in duration, was identified with a two-sided comparison method
using a resolution of 5 m vertical bins and a 10 dB threshold (Ryan et al.,
2015). Attenuated Signal (AS), defined as signal of lower amplitude due
to bubbles, was identified by comparing the deviation of each ping from
𝑆𝑣 data within the 100 to 200 m range, using a 30 ping average and −6 dB
threshold (Ryan et al., 2015). Samples detected as noise were regarded as
“empty water” and replaced with −999 dB which is approximately 0 in the
linear domain.

Transient noise (TN) may result from sounds generated in bad weather when
waves collide with the hull of the ship, and last for several pings. TN was
identified by comparing 𝑆𝑣 data from each ping to a block in a reference
layer at far range. If the ping median is greater than the block median by
a user defined threshold (30 dB), the ping is masked until transient noise
disappears, or until some minimum range (100 m) is reached. The method
is implemented in EchoPy.

Background noise (BN) was detected and subtracted following the method
described by De Robertis and Higginbottom (2007) (5 m vertical bins, 20
pings, Noise𝑚𝑎𝑥 = −125 dB), as implemented in EchoPy. The seabed and
below (SB) was excluded using a maximum 𝑆𝑣 bottom pick followed by
manual inspection, and correction where necessary. Aliased seabed (ASB) is
caused by seabed reverberation from preceding pings coinciding with echoes
from the current ping, and was replaced manually with −999 dB following
echogram scrutinisation, as was other obvious corruption. All manual in-
spection, scrutinisation and classification was undertaken using the GNU
Image Manipulation Program (GIMP).3

The top 20 m of range was excluded to avoid surface noise and near field
effects. The range of analysis was also restricted to 250 m because data from
2003 to 2006 were collected to a range of only 300 m and it is common to
consider the top 250 m in krill surveys (e.g. Fielding et al., 2014).

To remove bias from zooplankton undertaking diurnal vertical migration
3https://www.gimp.org, version 2.10.8.
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(movement from depth to the surface at night), all data before maritime
sunrise and after maritime sunset were discarded. The local time of each
ping relative to the solar noon was calculated using Astral.4

It is common practice in fisheries acoustics to downsample data using spa-
tial averaging (sometimes called binning or bucketing) to reduce the effect
of noise extrema, account for the linearity principle (which requires a mini-
mum number of samples to ensure stochasticity of animal orientation) and
to reduce local variability. However, we have concerns about the sensitivity
of volume backscattering coefficient (𝑆𝑣) results to the choice of bin size (for
examples and discussion, see Appendix G). This study does not use results
to derive biological abundance or biomass estimates and can therefore main-
tain the native resolution of the data. This preserves the spatial variability
of the signal in all subsequent calculations.

4.2.3 Echometrics

From the metrics proposed by Urmy, Horne and Barbee (2012), we calcu-
lated density, abundance, location, dispersion, occupied, evenness and ag-
gregation on a ping-by-ping basis (Table 4.2 5). Density and abundance are
measures of the intensity of the reflected acoustic signal. Location, being the
centre of mass of the signal, indicates the water column depth from which
reflections originate. Dispersion is a measure of the spatial distribution of
the signal. Occupied is the proportion of the water column with reflected
signal greater than some threshold value 𝑠𝑡ℎ𝑟𝑒𝑠ℎ

𝑣 which we set to -90 dB re
1 m−1 after Urmy, Horne and Barbee (2012). Aggregation and evenness are
indications of whether the signal is grouped or evenly distributed. Urmy,
Horne and Barbee (2012) also mention a layer structure metric, but this
was not adequately described algebraically and so was not used. Annual
summaries were calculated to assess interannual variability using the mean
of all ping values for that year (the mean in the linear domain was used

4https://github.com/sffjunkie/astral, accessed April 2020.
5N.B. The equation for occupied was specified incorrectly in Urmy, Horne and Barbee

(2012) but can be deduced from the context and is corrected here.
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for decibel measures). A principal component analysis was undertaken to
assess the degree of collinearity among metrics.

Table 4.2: Echometrics used for summarising active acoustic data. 𝑧 repre-
sents depth and 𝑠𝑣(𝑧) the volume backscattering coefficient at depth 𝑧. 𝐻
is the total water column depth.

Variable Description Equation Unit

Density Mean volume
backscattering
strength

𝑆𝑣 = 10 log10 (∫ 𝑠𝑣(𝑧)d𝑧)
𝐻 ) dB re 1 m−1

Abundance Area backscat-
tering strength

𝑆𝑎 = 10 log10(∫𝑠𝑣(𝑧)d𝑧) dB re 1 m2 m−2

Location Centre of mass CM = ∫𝑧𝑠𝑣(𝑧)d𝑧
∫𝑠𝑣(𝑧)d𝑧 m

Dispersion Inertia 𝐼 = ∫(𝑧 − CM)2𝑠𝑣(𝑧)d𝑧
∫𝑠𝑣(𝑧)d𝑧 m−2

Occupied Proportion occu-
pied

𝑃𝑜𝑐𝑐 = ∣𝑠𝑣(𝑧)>𝑠𝑡ℎ𝑟𝑒𝑠ℎ
𝑣 ∣

∣𝑧∣

Evenness Equivalent area EA = (∫𝑠𝑣(𝑧)d𝑧)2

∫𝑠𝑣(𝑧)2d𝑧 m

Aggregation Index of aggrega-
tion

IA = ∫𝑠𝑣(𝑧)2d𝑧
(∫𝑠𝑣(𝑧)d𝑧)2 m−1

Echometrics were compared to other environmental indices using correla-
tion analysis. The Pearson correlation coefficient (𝑟) is a measure of the
linear correlation between two variables 𝑋 and 𝑌 , where 1 is total positive
linear correlation, 0 is no linear correlation, and −1 is total negative lin-
ear correlation. The critical value of 𝑟 at 𝑝 = 0.05 with 𝑁 = 15 is 0.514
(Kanji, 2006) and so we consider correlations 𝑟 > 0.514 as significant. The
Spearman’s rank correlation coefficient (𝑟𝑠) is a measure of the monotonic
dependence between variables 𝑋 and 𝑌 and an indicator of non-linear cor-
relation. Values of 𝑟𝑠 > 0.525 are significant at 𝑝 = 0.05. We interpret
Pearson’s correlation coefficient (𝑟) and Spearman’s rank correlation coeffi-
cient (𝑟𝑠) according to Table 4.3 from (Fowler, Cohen and Jarvis, 1998).
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Table 4.3: Interpretation of the strength of a correlation.

Coefficient (positive or negative) Meaning
0.00 to 0.19 A very weak correlation
0.20 to 0.39 A weak correlation
0.40 to 0.69 A modest correlation
0.70 to 0.89 A strong correlation
0.90 to 1.00 A very strong correlation

4.2.4 Comparison with krill metrics

The Echometrics were compared to krill density estimates (KLD, g m−2)
and krill length calculated from the same WCB time series, after Fielding
et al. (2014). We used the median krill length (KLM, mm) as a measure of
central tendency of the distribution. Atkinson et al. (2006) report average
krill length of 40 mm at South Georgia, and so we used the proportion of
krill with length < 40 mm as a measure of small (possibly juvenile) krill
(KL40).

All correlation plots use a blue line to show the simple linear regression fit,
with a grey shaded area showing the standard error on either side of the
line.

4.2.5 Comparison with local environmental variables

Whitehouse, Priddle and Brandon (2000) showed interannual variability of
chlorophyll-a and phytoplankton (a key source of food for krill) and so the
Echometrics were compared to in situ, cotemporal measurements of chloro-
phyll (CHL, mg m−3). Echometrics were also compared with sea surface
temperature (SST, ºC) and mixed layer depth (MLD, m) (Table 4.4). The
nearest temporal measurement to the Western Core Box centroid (38º 30�
W, 53º 30� S) was used.
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Table 4.4: Independent environmental indices.

Variable Source
CHL Chlorophyll (mg m−3) obtained from the OCEANCOLOUR GLO CHL L4

REP OBSERVATIONS 009 082 product, 4 km resolution, available from the
E.U. Copernicus Marine Environment Monitoring Service at https://marine.c
opernicus.eu, (accessed September 2019).

ENSO The El Niño 3.4 region temperature anomaly obtained from the NOAA Na-
tional Weather Service Climate Prediction Center, http://www.cpc.ncep.noa
a.gov/data/indices/sstoi.indices, (accessed September 2019).

SAM Monthly SAM obtained from British Antarctic Survey, http://www.nerc-
bas.ac.uk/public/icd/gjma/newsam.1957.2007.txt, (accessed September
2019).

SST Sea Surface temperature (ºC) obtained from the NOAA Optimum Interpola-
tion Sea Surface Temperature V2 monthly mean data, 0.25 degree resolution,
available from https://www.ncdc.noaa.gov/oisst, (accessed September 2019).

MLD Mixed layer depth (m) obtained from the GLOBAL REANALYSIS PHY 001
030 monthly product, 0.083 degree resolution, available from the E.U. Coperni-
cus Marine Environment Monitoring Service at https://marine.copernicus.eu,
(accessed September 2019).

SII Sea ice extent (millions km2) in the preceding September, 25 km resolution,
obtained from Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K.
Windnagel. 2017, updated daily. Sea Ice Index, Version 3. Boulder, Colorado
USA. NSIDC: National Snow and Ice Data Center. doi: https://doi.org/10.7
265/N5K072F8, (accessed September 2019).

4.2.6 Comparison with larger scale, climatic variables

Fielding et al. (2014) showed higher krill density following colder sea surface
temperature in the preceding August and so the Echometrics were compared
with August SST (SST’). The indices were also compared to other larger
scale, climatic factors: SAM, ENSO, peak seasonal chlorophyll (CHL’), and
September sea ice extent (SII). September sea ice extent was chosen based
on typical maximum mean circumpolar sea ice extent reported by Holland
(2014).

4.2.7 Impact of survey parameters

We also examined aspects of the survey to determine possible bias. Most tra-
ditional survey results are derived from the magnitude of acoustic backscat-
ter and so we looked at the impact on abundance caused by differences
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in:

• Direction of sampling transect (North to South versus South to
North);

• Within day timing of transect (sampling in the morning (before the
solar noon) versus afternoon);

• Decadal timing of the survey (sampling before 2011 versus after);
• Seasonal timing of the survey (start date before 29 December (early

season) versus after (late season)).

4.3 Results

4.3.1 Interannual variability of Echometrics

All Echometrics vary by survey year (Figure 4.1; Section 4.6.1). Density
and abundance show a decrease between 2003 and 2019 (Figure 4.2). A
principal component analysis shows that 76% of variability described by
the Echometrics is explained by the first two principal components (PC1,
PC2), and 97% by the first four (Figure 4.3). PC2 shows decrease in a
similar pattern to that observed for density and abundance.

Figure 4.4 shows how the individual metrics are aligned with the first two
principal components and each other. Density and abundance are similar,
broadly aligned with PC2, and highly correlated (𝑟 = 0.995). Location is
closely aligned with PC1 and therefore orthogonal to density and abundance.
Aggregation is the reciprocal of evenness. Dispersion and location are the
opposite of occupied. Survey years 2005 and 2010 are highly separated along
PC1 and this is consistent with abundance and density plots (Figure 4.1).
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Figure 4.1: Western Core Box Echometrics by survey year.
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Figure 4.2: Density (𝑆𝑣), abundance (𝑆𝑎) and krill density (KLD) by survey
year.
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metrics by survey year.
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4.3.2 Comparison with krill metrics

Density and abundance are strongly positively correlated with krill density
(KLD) and median krill (KLM), and negatively correlated with smaller krill
(KL40) (Tables 4.5 and 4.6, Figure 4.5).

Table 4.5: Pearson correlation (𝑟) between Echometrics and other annual
indices. Statistically significant results are shown in bold (𝑝 < 0.05). Day
is the survey date relative to Jan 1. Krill metrics are krill density (KLD),
median krill length (KLM) and smaller krill (KL40). Local variables are
sea surface temperature (SST), chlorophyll (CHL) and mixed layer depth
(MLD). Climatic variables are Southern Annular Mode (SAM), El Niño
3.4 region temperature anomaly (ENSO), September sea ice extent (SII),
August sea surface temperature (SST’) and peak chlorophyll (CHL’). PC1,
PC2 and PC3 are the first three principal components of the Echometrics.

Timing Krill Local variables Climatic variables
year day KLD KLM KL40 SST CHL MLD SAM ENSO SII SST’ CHL’

density -0.62 0.39 0.83 0.60 -0.54 0.57 0.09 -0.29 -0.30 -0.42 0.01 -0.37 0.10
abundance -0.63 0.40 0.83 0.62 -0.57 0.57 0.14 -0.32 -0.28 -0.39 -0.02 -0.35 0.13
location 0.02 -0.33 -0.03 -0.41 0.31 -0.41 -0.70 0.10 -0.21 -0.08 0.68 0.18 -0.56
dispersion -0.19 0.40 -0.13 -0.16 0.14 0.31 0.19 -0.53 0.21 0.09 -0.27 0.09 0.00
occupied -0.35 0.41 0.09 0.56 -0.54 0.54 0.59 -0.20 0.27 -0.12 -0.41 -0.01 0.65
evenness 0.16 -0.00 -0.33 0.21 -0.28 0.02 0.59 0.23 0.29 -0.07 -0.26 0.31 0.76
aggregation 0.09 0.01 0.14 -0.41 0.51 0.01 -0.60 0.10 -0.38 -0.08 -0.05 -0.50 -0.62
PC1 0.19 -0.32 0.03 -0.46 0.47 -0.38 -0.70 0.18 -0.31 0.04 0.40 -0.13 -0.70
PC2 -0.59 0.37 0.81 0.54 -0.46 0.55 0.00 -0.27 -0.33 -0.37 -0.02 -0.45 -0.01
PC3 0.24 -0.34 -0.05 0.35 -0.35 -0.23 0.23 0.61 -0.01 -0.12 0.07 0.09 0.50
year 1.00 -0.61 -0.01 -0.28 0.25 -0.44 -0.01 0.17 -0.08 0.14 -0.03 -0.05 -0.14
day -0.61 1.00 0.40 0.06 0.01 0.81 0.16 -0.42 -0.01 -0.16 -0.64 -0.55 0.11
KLD -0.01 0.40 1.00 0.49 -0.44 0.46 0.19 -0.37 -0.32 0.03 -0.22 -0.47 0.12
KLM -0.28 0.06 0.49 1.00 -0.96 0.35 0.52 0.04 0.09 -0.20 -0.10 0.13 0.57
KL40 0.25 0.01 -0.44 -0.96 1.00 -0.37 -0.50 -0.03 -0.07 0.26 0.06 -0.29 -0.61

There is a modest correlation between occupied and median krill length
(KLM), and occupied and smaller krill (KL40), suggesting higher occupation
with larger animals (Figure 4.6), and therefore, that larger animals occupy
more space.
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Table 4.6: Spearman’s rank correlation (𝑟𝑠) between Echometrics and other
annual indices. Statistically significant results are shown in bold (𝑝 < 0.05).
Day is the survey date relative to Jan 1. Krill metrics are krill density
(KLD), median krill length (KLM) and smaller krill (KL40). Local vari-
ables are sea surface temperature (SST), chlorophyll (CHL) and mixed layer
depth (MLD). Climatic variables are Southern Annular Mode (SAM), El
Niño 3.4 region temperature anomaly (ENSO), September sea ice extent
(SII), August sea surface temperature (SST’) and peak chlorophyll (CHL’).
PC1, PC2 and PC3 are the first three principal components of the Echo-
metrics.

Timing Krill Local variables Climatic variables
year day KLD KLM KL40 SST CHL MLD SAM ENSO SII SST’ CHL’

density -0.62 0.43 0.79 0.57 -0.50 0.60 0.37 -0.32 -0.26 -0.49 -0.03 -0.43 0.18
abundance -0.59 0.43 0.80 0.56 -0.49 0.59 0.42 -0.44 -0.23 -0.42 -0.05 -0.37 0.20
location 0.04 -0.46 -0.13 -0.42 0.36 -0.50 -0.64 0.30 -0.15 0.11 0.65 0.13 -0.52
dispersion -0.21 0.39 -0.16 -0.15 0.17 0.32 0.23 -0.49 0.11 0.19 -0.28 0.09 0.16
occupied -0.35 0.45 0.22 0.57 -0.55 0.57 0.62 -0.27 0.12 -0.31 -0.37 -0.04 0.60
evenness 0.16 -0.01 -0.27 0.11 -0.19 0.07 0.42 0.04 0.15 -0.11 -0.28 0.36 0.57
aggregation 0.06 -0.08 0.18 -0.40 0.46 -0.11 -0.61 -0.02 -0.17 0.18 0.21 -0.32 -0.66
PC1 0.23 -0.32 0.03 -0.49 0.50 -0.40 -0.71 0.23 -0.16 0.13 0.37 -0.15 -0.68
PC2 -0.58 0.41 0.76 0.40 -0.31 0.54 0.15 -0.39 -0.23 -0.38 0.01 -0.45 -0.08
PC3 0.22 -0.35 0.21 0.43 -0.47 -0.23 0.24 0.41 -0.02 -0.21 0.13 0.11 0.30
year 1.00 -0.57 0.05 -0.27 0.17 -0.36 -0.19 0.13 -0.05 0.17 -0.04 -0.10 -0.04
day -0.57 1.0 0.32 0.16 0.01 0.75 0.39 -0.30 0.26 -0.19 -0.65 -0.56 0.06
KLD 0.05 0.32 1.00 0.49 -0.42 0.43 0.45 -0.46 -0.33 0.12 -0.11 -0.46 0.28
KLM -0.27 0.16 0.49 1.00 -0.96 0.35 0.70 -0.09 0.06 -0.34 -0.11 0.01 0.61
KL40 0.17 0.01 -0.42 -0.96 1.00 -0.34 -0.67 0.06 -0.03 0.38 0.09 -0.19 -0.68
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Figure 4.5: Density (𝑆𝑣, top) and abundance (𝑆𝑎, bottom) by krill density
(KLD), median krill length (KLM) and smaller krill (KL40).
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Figure 4.6: Occupied by median krill length (KLM) and occupied by smaller
krill (KL40).
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4.3.3 Comparison with local, environmental variables

Density, abundance and occupied show modest correlation with sea surface
temperature (Tables 4.5 and 4.6, Figure 4.7). Location is strongly corre-
lated with chlorophyll (CHL), whilst occupied, evenness, aggregation show
a modest correlation (Tables 4.5 and 4.6). Backscatter is shallower, less ag-
gregated, more even and occupies more of the water column with increased
chlorophyll (Figure 4.8). Dispersion shows modest correlation with mixed
layer depth (MLD); backscatter is more dispersed when the mixed layer is
deeper (Figure 4.9).
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Figure 4.8: From top, location (CM), occupied (𝑃𝑜𝑐𝑐), evenness (EA) and
aggregation (IA) by in situ, cotemporal chlorophyll (CHL).
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Figure 4.9: Dispersion (I) by in situ, cotemporal mixed layer depth (MLD).
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4.3.4 Comparison with larger scale, climatic variables

None of the Echometrics show significant correlation with either SAM,
ENSO or August SST. There is a correlation between krill density and
August SST between 2003 and 2013 (𝑟 = −0.63, 𝑝 < 0.01) consistent with
Fielding et al. (2014). The correlation weakens when later years are consid-
ered (𝑟 = −0.47, 𝑝 < 0.05), however this appears be driven by 2017 which
was a particularly cold year, with low krill density (Figure 4.10).
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Figure 4.10: Krill density by August SST. The top graph uses data from
2003 to 2013, the bottom from 2003 to 2019

Location shows a modest correlation with September sea ice extent (SII);
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backscatter is deeper following high sea ice extent (Figure 4.11). Evenness
shows a strong correlation with peak chlorophyll (CHL’); location, occupied
and aggregation show modest correlation (Figure 4.12), but these correla-
tions are driven by unusually high peak chlorophyll in 2009, without which
the correlations are not significant.
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Figure 4.11: Location (CM) by September sea ice extent (SII).
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Figure 4.12: Evenness (EA), location (CM), occupied (𝑃𝑜𝑐𝑐) and aggrega-
tion (IA) by peak chlorophyll.

69



4.3.5 Impact of survey parameters

There is a modest negative correlation between the survey year (year) and
the survey date (day), indicating that surveys have typically occurred earlier
in the season during recent years (Figure 4.13). Although there is only weak
correlation between survey date and abundance (𝑟 = 0.41) (Figure 4.14), a
comparison of the distribution of abundance in early and late season shows
as much as 5 dB difference between early and late season surveys (Figure
4.15a). The difference in the abundance distribution from surveys before
2011 when compared to surveys after 2011 is ≈ 2 dB (Figure 4.15b).
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Figure 4.13: Western Core Box survey date by survey year.
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Figure 4.14: Abundance (𝑆𝑎), location (CM) and occupied (𝑃𝑜𝑐𝑐) by survey
date.

Whether transects were sailed in a northerly or southerly direction or in
the morning or the afternoon appears to have little effect on the abundance
distribution (Figure 4.15c and d).
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4.3.6 Echometric distributions

In earlier Figures, we used the mean as a measure of central tendency for
each of the Echometrics. The full distributions are shown as violin plots
below (Figures 4.16 , 4.17 , 4.18 , 4.19 , 4.20 , 4.21 and 4.22).
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Figure 4.16: Echometrics: density by survey year (o marks the mean value,
and × the mean computed in the linear domain).
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Figure 4.17: Echometrics: abundance by survey year (o marks the mean
value, and × the mean computed in the linear domain).
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Figure 4.18: Echometrics: location by survey year (o marks the mean).
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Figure 4.19: Echometrics: dispersion by survey year (o marks the mean).
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Figure 4.20: Echometrics: occupied by survey year (o marks the mean).
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Figure 4.21: Echometrics: evenness by survey year (o marks the mean).
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Figure 4.22: Echometrics: aggregation by survey year (o marks the mean).
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4.4 Discussion

4.4.1 Interannual variability

Our results suggest a decrease in density and abundance between 2003 and
2019 (Figure 4.2), however this could be an alias of survey timing (discussed
further in Section 4.4.5). Density and abundance are measures of acoustic
backscatter from the water column which is a proxy for biology. Antarctic
krill is considered to be the dominant zooplankton species in the Southern
Ocean, South Georgia pelagic ecosystem (Murphy et al., 2016). Atkinson et
al. (2004) reported a decline in krill stocks since the 1970s, and our results
may provide evidence of a continuing trend. Some models predict further
decline in Antarctic krill in the North Scotia Sea this century due to climate
change (Klein et al., 2018).

The WCB time series is still too short to accurately discern other patterns
of interannual variability (Figure 4.1). We might reasonably expect oscil-
lation in the data, driven by multi-year climatic effects such as SAM or
ENSO. Dispersion and location may indicate a multi-year cycle, but there
is insufficient data to confidently resolve any such patterns.

4.4.2 Comparison with krill metrics

Density and abundance are strongly correlated with krill density (Figure 4.5),
but are much easier to compute. Krill density requires net haul data to be
combined with acoustic data, and takes a considerable amount of effort to
collect. Computation of density and abundance, like the computation of krill
density (Madureira, Everson and Murphy, 1993; Fielding et al., 2014), still
requires that acoustic data be preprocessed to improve the signal to noise
ratio (this is further discussed in Section 4.6.2). There are years where the
correlation is weaker (e.g. 2004 and 2009), but even so, these results suggest
that density and abundance could be used as reasonable and parsimonious
approximations of krill density.
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4.4.3 Comparison with local, environmental variables

When chlorophyll is high, backscatter is closer to the surface (lower location),
less aggregated, more even and occupies more of the water column (Figure
4.8). Chlorophyll is often used as a proxy for phytoplankton which grow
near the surface using light for photosynthesis. More phytoplankton means
higher food availability for zooplankton (Folt and Burns, 1999) and this
could explain increased backscatter towards the surface.

Relating krill density to environmental correlates remains a key goal (White-
house et al., 2008; Santora et al., 2012; Silk et al., 2016; Davis et al., 2017),
as we seek to understand the effect of climate change on krill distribution
(Flores et al., 2012). A positive relationship between chlorophyll-a concen-
tration and krill density has been reported previously (Whitehouse et al.,
2008; Silk et al., 2016). We also found a weak positive relationship of krill
with SST, however we must remember that krill are a stenothermic organ-
ism (Wiedenmann, Cresswell and Mangel, 2008) and South Georgia is at the
northern limit of its distribution range (Hill, Phillips and Atkinson, 2013).

Location, dispersion, occupied, evenness and aggregation all measure aspects
of the vertical backscatter distribution. The correlation between location
and chlorophyll reinforces the observation that krill distribution is influ-
enced by chlorophyll, with “krill” moving closer to the surface when greater
productivity is observed. We also observed a weak association between
mixed layer depth and dispersion, which would indicate that a shallowing of
the mixed layer resulted in acoustic backscatter being located higher in the
water column. These features may be related. The phytoplankton bloom at
South Georgia is fuelled by iron replete conditions, shallower mixed layers
and slightly elevated temperatures (Korb et al., 2008).

This study highlights that Echometrics can be used to provide both mea-
sures of abundance and distribution that are correlated with environmental
parameters. Whilst biomass is a key driver in determining the management
of the Antarctic krill fishery in terms of quantity, the ability to predict
“hotspots” in the distribution of organisms is pertinent to predator prey
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interactions (Murphy et al., 2007; Davis et al., 2017)

4.4.4 Comparison with larger scale, climatic variables

We found no significant correlation between Echometrics and SAM or ENSO.
Although correlation between krill density and August Sea Surface temper-
ature is weaker than in the earlier study by Fielding et al. (2014), this could
be caused by 2017 which had exceptionally low SST, and the relation may
still hold (Figure 4.10). Finding climatically driven trends in biological data
is complex and requires long time series. Analyses of primary productivity
data suggests that a time series of more than forty years is required for trend
detection and resolution of anthropogenic influence in the Southern Ocean
(Henson, Beaulieu and Lampitt, 2016). This would indicate that another
twenty years of data are required in the Western Core Box.

Acoustic backscatter is deeper (has a higher location) following high sea
ice extent in the preceding austral winter (Figure 4.11). Reduced ocean
mixing and increased stratification are associated with higher sea ice extent
(Kjellsson et al., 2015), however we found only weak correlation between
location and mixed layer depth (𝑟 = 0.1). The krill life cycle is known to
depend on sea ice, with under-ice algae being an important winter food
source, and some analyses suggesting a decline in krill biomass linked to
sea ice reduction (Atkinson et al., 2019). However, we found no direct
correlation between density and abundance compared to sea ice extent. It
is hard to understand exactly why the winter sea ice extent would have a
summer effect on location in the South Georgia region, where no sea ice
itself exists and this relationship may be a type I error.

4.4.5 Impact of survey parameters

The survey timing may have caused sampling bias and may account for the
apparent decrease in density and abundance seen since 2003. The Western
Core Box is known to exhibit considerable intra-annual variability, with low
krill biomass in early season and high krill biomass in mid-season having
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been observed using mooring data and ship based surveys (Saunders et
al., 2007; Reid et al., 2010). There has been logistics pressure to conduct
Western Core Box surveys earlier in the season, and this trend is confirmed
in Figure 4.13. The relationship between density and abundance and sea
surface temperature may also be an alias of survey timing, with sea surface
temperature typically cooler in early season and warmer in later season.

The influence of survey timing on biomass estimates has been reported
previously, for example by Greenstreet et al. (2006). In their case they
were able to adjust their sand eel survey estimate by applying a correction
based on timing of the survey with respect to the spring bloom. In our
case, we know that the population of krill at South Georgia is not linked to
the spring bloom or local production, but results from recruitment from the
Peninsula (Murphy et al., 2007, 2012). This makes it difficult to determine
a correction. Greater knowledge of the intra-annual variability of krill at
South Georgia from moorings or autonomous vehicle would provide greater
confidence in these large-scale estimates.

4.4.6 Echometrics

Fisheries acoustic surveys often focus on deriving biomass estimates of a
single species (e.g. krill). However, the change in an ecosystem could be
reflected not just in biomass, but in the distribution and behaviour of all
animals. Our principal component analysis suggests that more variability
is explained by dimensions that are orthogonal to density and abundance
(Figure 4.4). Location and aggregation are more closely aligned with the first
principal component and may therefore be better descriptors of ecosystem
variability.

The Global Ocean Observing System (GOOS) provides a framework for
measuring a wide range of variables but acoustic measurements are not yet
included in a coordinated way (Lindstrom et al., 2012). If acoustic data
processing methods could be standardised, then Echometrics could enable
a systematised methodology for examining and comparing acoustic data.
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Density and abundance are highly correlated (𝑟 = 0.995) and provide similar
results across all comparisons in this study. For brevity, future studies may
choose to report either one of these Echometrics but not both. Evenness is
the reciprocal of aggregation, and this redundancy could also be removed.

The location Echometric may be invariant to instrument type and provide
a way to compare different acoustic data sets, since Location is not depen-
dent on an absolute measure or threshold of backscattering strength, and
should be resilient to calibration drift and differences between instruments.
Density and abundance are highly dependent on instrument calibration, and
differences between instruments can make it hard to compare survey results
(De Robertis et al., 2019). The dispersion measure decreases as dispersion
increases and this can be confusing. We suggest inverting the dispersion
measure or renaming dispersion to convocation in future studies.

The Western Core Box survey was designed primarily to study Antarctic
krill, which are typically located in the top 250 m of the water column
(Quetin and Ross, 1991). We used 120 kHz which is the most suitable fre-
quency for their detection (Madureira, Everson and Murphy, 1993). How-
ever, 38 kHz data are also collected, have a range in excess of 500 m, and
may provide ecosystem information on larger organisms. Echometrics were
designed to summarise fisheries acoustic backscatter data without regard to
taxa (Urmy, Horne and Barbee, 2012). Here, we show that density and abun-
dance correlate with estimates of krill density, suggesting that krill dominate
the acoustic backscatter in this study area. Since single frequency (120 kHz)
density and abundance are more straightforward to compute than multi-
frequency detection (e.g. Madureira, Everson and Murphy, 1993; Conti and
Demer, 2006), they may be more suitable for onboard processing on marine
autonomous vehicles.

4.5 Conclusions
The Southern Ocean has experienced collapses of marine species following
exploitation, including seals in the 19th century and whales in the middle of
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the 20th century (Constable et al., 2014). The ecosystem now faces pressure
due to climate change. Ecosystems management is complex, with challenges
including: defining long term, ecosystem related objectives; determining
meaningful reference values and indicators for desirable or undesirable states
of the ecosystem; and developing appropriate data collection, analytical
tools and models (Cury et al., 2005). Nature may not be predictable, but it
is not totally unpredictable either. We have shown that Echometrics may
be descriptive indicators of future ecosystem change at South Georgia.

We used Echometrics to show variability in an Antarctic marine ecosystem.
That variability correlated well with traditional krill biomass surveys and
showed some correlation with local, environmental variables (e.g. chloro-
phyll). We suggest that Echometrics could be suitable essential ocean vari-
ables (Constable et al., 2016) and could be used as a proxy for measuring
the pelagic realm as part of the Global Ocean Observing System.
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4.6 Supplementary material

4.6.1 Echometric data

Table 4.7 shows Echometrics computed by survey. Uncertainty is quoted as
the standard error of the mean across intra-annual transects (the standard
error of the mean in the linear domain was used for decibel values).

Table 4.7: The Western Core Box 120 kHz Echometrics time series.

Year n Abundance Density Location Dispersion Occupied Evenness Aggregation
2003 149076 -50.12 ±0.08 -73.35 ±0.08 129.31 ±0.07 3552.14 ±4.75 0.748 ±0.0003 224.56 ±0.35 0.008 ±0.0000
2004 124176 -52.05 ±0.04 -75.50 ±0.04 131.17 ±0.10 3546.70 ±5.19 0.708 ±0.0004 204.92 ±0.34 0.008 ±0.0000
2005 74370 -46.51 ±0.12 -69.60 ±0.12 121.97 ±0.13 2982.12 ±7.02 0.763 ±0.0004 170.15 ±0.42 0.011 ±0.0001
2006 127692 -47.82 ±0.35 -71.22 ±0.42 147.03 ±0.12 2820.14 ±4.94 0.544 ±0.0004 169.37 ±0.32 0.012 ±0.0000
2007 89142 -50.58 ±0.15 -73.88 ±0.14 153.03 ±0.17 2183.10 ±5.07 0.544 ±0.0004 183.93 ±0.42 0.013 ±0.0001
2009 128428 -51.81 ±0.01 -75.22 ±0.01 111.05 ±0.07 2727.78 ±3.75 0.869 ±0.0002 277.01 ±0.34 0.005 ±0.0000
2010 116818 -56.22 ±0.07 -79.71 ±0.06 140.88 ±0.12 3749.17 ±5.52 0.633 ±0.0004 211.76 ±0.33 0.008 ±0.0000
2011 127624 -49.74 ±0.16 -72.59 ±0.14 129.28 ±0.09 3927.92 ±5.34 0.773 ±0.0004 226.40 ±0.38 0.007 ±0.0000
2012 182800 -50.01 ±0.13 -73.34 ±0.15 125.02 ±0.07 2802.96 ±2.92 0.769 ±0.0003 247.86 ±0.32 0.007 ±0.0000
2013 131090 -53.04 ±0.18 -76.25 ±0.18 157.79 ±0.12 2188.49 ±3.73 0.512 ±0.0005 192.94 ±0.28 0.008 ±0.0000
2014 125254 -51.79 ±0.13 -75.27 ±0.15 150.54 ±0.11 2794.85 ±4.30 0.657 ±0.0004 222.81 ±0.39 0.008 ±0.0000
2015 130786 -54.84 ±0.16 -77.68 ±0.17 155.48 ±0.12 2967.97 ±5.05 0.473 ±0.0004 205.98 ±0.31 0.008 ±0.0000
2016 125982 -52.95 ±0.78 -76.66 ±0.72 106.38 ±0.08 3168.91 ±4.14 0.754 ±0.0004 249.01 ±0.40 0.006 ±0.0000
2017 139930 -53.80 ±0.07 -76.61 ±0.06 136.39 ±0.14 2427.19 ±4.03 0.475 ±0.0005 192.99 ±0.39 0.018 ±0.0001
2019 136160 -54.81 ±0.08 -78.36 ±0.07 126.53 ±0.10 3288.09 ±4.70 0.609 ±0.0004 194.13 ±0.39 0.010 ±0.0000

4.6.2 Noise and unwanted signal

To assess the impact of noise removal algorithms, acoustic processing steps
were repeated with each noise removal step disabled in turn (a so-called One-
Factor-At-a-Time (OAT) analysis, Razavi and Gupta, 2015). The fraction
of data removed from the top 250 m depth as a result of each strategy was
recorded per transect, as was the impact on mean 𝑆𝑣 for that transect.

Removal of noise and unwanted signal is an essential preprocessing step,
without which the signal to noise ratio would be unacceptably low and
density and abundance would be unusable. Surface noise, seabed, aliased
seabed and impulse noise removal have a large effect on 𝑆𝑣 (Δ𝜇𝑆𝑣38 >
40 dB, Table 4.8). Transient noise, background noise and attenuated signal
have a comparatively small effect (Δ𝜇𝑆𝑣 < 1 dB).

Noise and unwanted signal account for 27% of 38 kHz and 20% of 120 kHz
data. Removal of this noise and unwanted signal reduces data size with
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Table 4.8: Fraction of 38 kHz and 120 kHz data removed from the top 250 m
of the water column by noise removal process. Δ𝜇𝑆𝑣38 and Δ𝜇𝑆𝑣120 are
the corresponding change in mean volume backscattering strength.

Noise 38 kHz 120 kHz Δ𝜇𝑆𝑣38 Δ𝜇𝑆𝑣120

Attenuated signal 0.046 ±0.004 0.006 ±0.001 0.02 ±0.01 0.01 ±0.00
Aliased seabed 0.021 ±0.002 45.25 ±0.75
Background noise 0.01 ±0.00 0.40 ±0.15
Impulse noise 0.018 ±0.001 0.008 ±0.001 40.30 ±10.33 32.06 ±11.53
Seabed 0.098 ±0.003 0.099 ±0.003 45.25 ±0.75 35.54 ±0.58
Surface noise 0.080 ±0.000 0.080 ±0.000 69.19 ±0.70 76.91 ±0.68
Transient noise 0.005 ±0.002 0.003 ±0.001 0.11 ±0.06 0.03 ±0.01

a compression ratio of 1.37. Approximately 10% of 38 kHz samples are
reflections from the seabed (Table 4.8). Failure to remove seabed causes
substantial bias in backscatter estimates (𝑆𝑣) (Δ𝜇𝑆𝑣38 = 45 dB , Δ𝜇𝑆𝑣120
= 36 dB), but seabed removal features are common in fisheries acoustic
software (e.g. Echoview). Aliased seabed is present in 38 kHz data (≈ 2%,
Δ𝜇𝑆𝑣38 = 45 dB). Whilst aliased seabed reflections can be avoided in some
surveys (e.g. using the methods of Renfree and Demer, 2016), unsupervised
removal remains a key unresolved problem for automated acoustic data
processing, which is therefore the problem we study next.
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Chapter 5

Detecting aliased seabed
echoes in fisheries acoustic
data

“An algorithm must be seen to be believed.”
Donald Knuth, Vol. I, Fundamental Algorithms (1968)

Acoustic data must be preprocessed to improve the signal to noise ratio be-
fore indices such as Echometrics can be computed (Section 4.6.2). Unsuper-
vised algorithms exist for many forms of noise and corruption (e.g. impulse
noise, background noise and seabed detection), but aliased seabed detection
and removal is currently undertaken manually, a laborious task and a crit-
ical block to autonomous operation on MAVs. In this chapter we develop
algorithms for aliased seabed detection.

Some of this material has previously been published as a preprint (R. Black-
well et al., 2019).
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5.1 Introduction
Echosounders are routinely used in fisheries acoustics to survey marine
ecosystems (Simmonds and MacLennan, 2005). Sound pulses (“pings’ ’) are
transmitted towards a target and the intensity (Volume backscatter, 𝑆𝑣)
is measured, integrated and recorded. Signals in acoustic data come from
a combination of biotic targets (e.g. fish), abiotic targets (e.g. seabed, gas
fluxes) and noise. Therefore, reflections from biological targets may be ob-
scured by various types of acoustic noise, corruption or attenuation. Figure
5.1a shows an example echogram where the horizontal stripe of high 𝑆𝑣 is
caused by reflections from zooplankton. The curve of high 𝑆𝑣 below is not
the seabed, but an alias caused by seabed reverberations from preceding
pings coinciding with the current ping reception.

Failure to detect and remove unwanted signal prior to biological target detec-
tion could result in poor estimates of animal abundance or biomass (MacLen-
nan et al., 2004). Algorithms exist for the detection of many of these cor-
ruptions: impulsive noise spikes (Anderson, Brierley and Armstrong, 2005);
attenuated signal (Ryan et al., 2015); transient noise (persisting for multiple
pings) (Ryan et al., 2015); and background noise (relatively constant for ex-
tended periods) (De Robertis and Higginbottom, 2007). However, aliased
seabed is typically either avoided or removed manually, a notoriously la-
borious task. Aliased seabed and biology can have a similar appearance
in echograms (e.g. Figure 5.1a), and when they cross it can be difficult to
precisely determine the boundary. Aliased seabed detection is therefore
subjective and a much harder problem than true seabed detection.

Although aliased seabed can occur at any frequency, it is common in lower
frequency data (e.g. 18 kHz, 38 kHz) when using a fixed, short transmit
pulse interval (𝐼𝑇 ) and crossing the continental shelf. Acoustic signals are
attenuated by absorption with range (𝑅) as a function of frequency, temper-
ature and seawater chemical composition (Moll, Ainslie and Vossen, 2009),
limiting echosounder range (𝑅𝑚𝑎𝑥). Typical maximum seabed detection
depths by frequency are shown in Table 5.2. If the ping interval 𝐼𝑇 is short
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Figure 5.1: Aliased seabed echoes seen in a section of 38 kHz acoustic data
with (a) volume backscatter (𝑆𝑣), (b) along-ship split beam angle (𝜂𝜃) and
(c) a typical, hand-drawn aliased seabed removal mask. The horizontal axis
shows pings with interval (𝐼𝑇 ) of 2 s, nominal speed 10 kts and an extent of
about 3.3 km. Data recorded using a Simrad EK60 scientific echosounder
onboard RRS James Clark Ross, cruise JR280.

with respect to the time taken for a reflection to occur from a seabed be-
yond the logging range 𝑅𝐿, as described in (5.1), then aliasing can occur
with reflections from preceding pings coinciding with echoes from the cur-
rent ping. However, practical use of (5.1) for prediction requires detailed
bathymetry data that are rarely available with sufficient spatial accuracy
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Table 5.1: Terms, symbols and units.

Term Symbol Unit Description
Range 𝑅 m Distance from transducer.
Maximum seabed detection range 𝑅𝑚𝑎𝑥 m Maximum seabed detection range as a conse-

quence of absorption and loss.
Data logging range 𝑅𝐿 m Range to which data are logged.
Seabed range 𝑅𝑆 m Distance from the transducer to the seabed.
Aliased seabed range 𝑅𝒜 m Range to aliased seabed.
Transmit pulse interval 𝐼𝑇 s Time between consecutive pulse transmis-

sions.
Sound speed 𝑐 𝑚𝑠−1 Speed of sound in seawater (approximately

1500𝑚𝑠−1

Modulo function 𝑚𝑜𝑑 𝑚𝑜𝑑(𝑎, 𝑚) returns the remainder after divi-
sion of 𝑎 by 𝑚 , where 𝑎 is the dividend and
𝑚 is the divisor.

Volume backscattering strength 𝑆𝑣 dB re 1 𝑚−1

Along-ship split-beam angle 𝜂𝜃 Signed octet -128 to 127, corresponding to -180 to 180
degrees between fore and aft transducer seg-
ments.

Athwart-ship split-beam angle 𝜂𝜙 Signed octet -128 to 127, corresponding to -180 to 180 de-
grees between port and starboard transducer
segments.

Feature matrix 𝑋 Feature matrix used as input to machine
learning algorithms.

Labels 𝐿 Matrix of class labels (e.g. aliased seabed,
biology, other) for echogram elements.

Bayes error 𝜖 The Bayes error (the minimum error possi-
ble).

𝑆𝑣 threshold 𝑇 dB re 1𝑚−1 Threshold used when selecting volume
backscatter data.

𝜂𝜃 threshold 𝑇𝜃 Threshold used when selecting squared along-
ship split-beam angle data.

𝜂𝜙 threshold 𝑇𝜙 Threshold used when selecting squared
athwart-ship split-beam angle data.

Aliased seabed pixels 𝒜 The set of aliased seabed pixels.
Biology pixels ℬ The set of biology candidate pixels.
Other pixels 𝒪 The set of pixels considered to be confidently

outside 𝒜 and ℬ having excluded bottom.

and resolution (e.g. Global Bathymetric Chart of the Oceans (Hall, 2006) ≈
1000 m resolution, South Georgia Bathymetry Database (Hogg et al., 2016)
≈ 100 m resolution) compared to the scale of the acoustic data (e.g. 10 m).
Renfree and Demer (2016) present the strategy for avoiding aliased seabed,
by dynamically optimising 𝐼𝑇 and the data logging range (𝑅𝐿). However,
changing parameters mid-survey causes changes in spatial resolution compli-
cating subsequent data analyses. In addition, the background noise removal
method implemented by De Robertis and Higginbottom (2007) requires a
large 𝑅𝐿 to determine the noise level, thus constraining the adjustment
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Table 5.2: Maximum seabed detection range (𝑅𝑚𝑎𝑥), using typical trans-
ducer settings, according to the Simrad EK60 reference manual.

Frequency (kHz) 𝑅𝑚𝑎𝑥 (m)
18 7000
38 2800
70 1100

120 850
200 550

demanded by Renfree and Demer.

𝑅𝒜 = mod(2𝑅𝑆, 𝑐 𝐼𝑇 )
2 , where 𝑅𝐿 < 𝑅𝑆 < 𝑅𝑚𝑎𝑥 (5.1)

We note that “false bottom” and “shadow bottom” are broad, colloquial
terms used to describe a variety of different phenomena and we henceforth
use the term “aliased seabed” to mean the precise conditions described in
(5.1). We are explicitly not concerned with the following effects:

1. dense fish aggregations causing a false detection of the seabed (Foote
et al., 1991);

2. secondary echoes caused by reverberation from the current ping.
(Note that secondary echoes appear below the true bottom in
echograms and are therefore already excluded by bottom detection
algorithms);

3. secondary echoes from transducer sidelobes (Clarke, 2006).

Modern echosounders use split-beam transducers, which are divided into
four quadrants allowing target direction to be determined by comparing
the signal received at each quadrant (Simmonds and MacLennan, 2005).
In addition to recording amplitude, they also record the split-beam angle
(SBA). The along-ship angle (𝜂𝜃) is the phase difference between the fore
and aft transducer halves, and the athwart-ship angle (𝜂𝜙) is determined
from the starboard and port halves. Reflection and scattering from a deep
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seabed occur over a large area due to beam spreading, causing variance in
wave arrival times. A rising seabed is detected at the fore quadrants of the
split-beam transducer before the aft quadrants and vice-versa for a falling
seabed. These effects, caused by the seabed geometry, are particularly vis-
ible in 𝜂𝜃 data and appear to differentiate aliased seabed from biological
reflections (Figure 5.1b). MacLennan et al. (2004) show that SBA reflec-
tions from fish aggregations are not necessarily an accurate indication of
target direction whilst reflections from the seabed correlate well to seabed
slope. Bourguignon et al. (2009) show that seabed detection with a Simrad
ME70 using SBA and amplitude together is more effective than using am-
plitude alone. This would suggest that SBA is an additional discriminatory
variable.

An echogram is a matrix, or image, of signal values indexed by depth
or range and along-track distance. We denote the volume backscatter as
𝑆𝑣(𝑗, 𝑘) where 𝑗 is the range index and 𝑘 the along-track distance index.
The echogram can also be indexed one-dimensionally as 𝑆𝑣(𝑖) where 𝑖 varies
across all combinations of 𝑗 and 𝑘. 𝜂𝜃(𝑖) and 𝜂𝜙(𝑖) are similar and represent
SBA. Elements, or pixels, in an echogram can be labelled as belonging to a
known class (e.g. aliased seabed). We denote the label for 𝑆𝑣(𝑖), 𝜂𝜃(𝑖) and
𝜂𝜙(𝑖) as 𝐿(𝑖).

A classifier is a function that predicts labels from features (in our case 𝑆𝑣,
𝜂𝜃 and 𝜂𝜙). Some classifiers are expressed algorithmically, others are the
result of machine learning. Given a training dataset with feature vectors
𝑋, and corresponding classification labels 𝐿, then a learning algorithm is a
function 𝑓 that returns a hypothesis function ℎ. ℎ can be used to predict
labels 𝐿 from arbitrary feature vectors 𝑋′ as in (5.2). The selection of a
suitable, discriminating feature vector is known as feature extraction. The
adjustment of the classifier parameters is machine learning.

ℎ = 𝑓(𝑋, 𝐿), 𝐿 = ℎ(𝑋′). (5.2)

There is a huge literature devoted to machine learning and many different
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kinds of machine learning algorithms. A perceptron is a simple model of
a biological neuron (Rosenblatt, 1958) that makes classification predictions
based on learned linear decision boundaries. It is useful for determining
whether a problem is linearly separable. The 𝑘-nearest-neighbour (kNN)
is one of the simplest non-linear machine learning algorithms. It treats all
training data as points in 𝑛-dimensional feature space and makes a classifi-
cation prediction for a new datum 𝑝, by assessing the 𝑘 nearest examples to
𝑝 (Cover and Hart, 1967). Notwithstanding its simplicity, it has the useful
asymptotic property that as 𝑘 → ∞ the probability of error cannot be more
than twice the Bayes probability of error (the minimum error possible). As
such, it provides a benchmark with which to compare the performance of
other classifiers that may have no known bounds on optimality. Random
forests are an ensemble learning method that combine multiple decision
trees based on random selections from the data (Breiman, 2001). They of-
ten create accurate classifiers that do not over-fit the data. Artificial neural
networks, such as the multilayer perceptron (MLP), use layers of neurons
between input and output (Rumelhart, Hinton and Williams, 1986). Neu-
rons fire according to an activation function and associated weights. Neural
networks are capable of learning non-linear models by iterative adjustment
of weights during training, a process known as backpropagation.

Machine learning has been used in fisheries acoustics for species identifica-
tion, for example Simmonds, Armstrong and Copland (1996), Haralabous
and Georgakarakos (1996) Woodd-Walker, Kingston and Gallienne (2001)
use neural networks and Fernandes (2009), Fallon, Fielding and Fernan-
des (2016) use tree-based methods. The general approach has been to
identify target schools, extract features based on school morphology and
acoustic response, and then apply a classifier. Recent advances now allow
machine learning to be applied directly to echogram pixels, removing the
need for feature extraction, and potentially increasing accuracy. Deep learn-
ing models are composed of multiple processing layers (LeCun, Bengio and
Hinton, 2015) and take advantage of modern high-performance computers
to train deeper and more complex networks. Deep convolutional neural
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networks (CNN), inspired by animal visual systems, have brought about
breakthroughs in many fields including image processing. As an example,
the MNIST problem1, which requires classification of handwritten digits,
has become a de facto standard test case and benchmark for machine learn-
ing classifiers. CNNs currently account for the best performing solutions
because of their ability to find structure in high dimensional space without
the need for preprocessing or explicit feature extraction.

The evaluation of machine learning algorithms can be highly inaccurate if
the same data are used for training and test purposes (Flexer, 1996). Models
become over-fitted for a particular dataset in such a way that they cannot
generalise for new, unseen data. This can be avoided using cross validation
where the data are partitioned into 𝑛 folds so that 𝑛 subsets of 𝑛 − 1 folds
can each be used for training, with one fold for testing. For example, in
a ten-fold cross validation, there are ten combinations of nine training and
one test partition. By running the learning algorithm separately on these
ten combinations, results can be aggregated and quoted in terms of a mean
and standard error.

Conventionally, machine learning is associated with automation of difficult
problems. However, less discussed aspects are the use of machine learn-
ing algorithms as part of exploratory data analysis (Tukey, 1962) and as
a benchmark with which to evaluate the performance of conventional algo-
rithms. We are not only interested in presenting an algorithmic solution
to the stated problem, we are interested in showing a methodology for de-
signing such algorithms. We assemble a training dataset of aliased seabed
examples and counterexamples and use it to train linear perceptron, kNN,
Random forest, MLP and CNN machine learning classifiers. We evaluate
and compare classifiers and use our results to inform the design of a simpler
algorithm that can be applied without prior learning.

1See http://yann.lecun.com/exdb/mnist/
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5.2 Materials and methods
Data were acquired from an annual ship-based survey (the “Western Core
Box’ ’) conducted off the North West coast of South Georgia by the British
Antarctic Survey (Fielding et al., 2014, Section 1.2). Each survey consisted
of eight 80 km transects run in daylight hours, alternately in on and off shelf
directions at a nominal speed of 10 knots with a fixed ping rate, 𝐼𝑇 = 2 s
(Figure 1.2). Acoustic data were captured using a Simrad EK60 scientific
echosounder (38, 120 and 200 kHz). Power settings varied between years
but were consistent within year. Seabed depth (𝑅𝑆) varied from a few tens
of metres to more than 3000 m causing large regions of aliased seabed in
echograms. 30 example transects were randomly selected from the 2009 to
2013 surveys.

In this dataset, aliased seabed appears in the 38 kHz data, and although
other frequencies are available, this may not always be the case for other
surveys and especially where ships of opportunity (e.g. fishing vessels) are
employed. We therefore chose to consider only 38 kHz data. Power and
angle data were converted to echograms of 𝑆𝑣, 𝜂𝜃, and 𝜂𝜙 using EchoJulia2.
Echosounder calibration corrections were determined using standard sphere
techniques (Demer et al., 2015) and applied during conversion. The first
10 m of range were excluded, to ensure far field operation and avoid trans-
ducer ringing effects (Simmonds and MacLennan, 2005). The seabed and
below were removed using a maximum 𝑆𝑣 bottom pick followed by manual
inspection and correction where necessary.

Areas of aliased seabed were identified using human echogram image inter-
pretation of 𝑆𝑣 data and corresponding masks were hand-drawn. Otsu’s
method (Otsu, 1979) was used to refine the boundaries of the hand-drawn
regions whereby a greyscale image with a bimodal histogram is converted to
a binary image using an optimal threshold. The pixels in the hand-drawn
region which were not in the refined region were deliberately excluded from
further analysis because of their potentially uncertain classification. We

2https://echojulia.github.io/
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used integers to label the data, with 𝐿(𝑖) = 2, chosen arbitrarily, to de-
note aliased seabed. Therefore, the set of aliased seabed pixels is given by
𝒜 = {𝑖 ∣ 𝐿(𝑖) = 2}∀𝑖.

Discrimination of aliased seabed pixels (𝒜) from other (𝒪) is a two-class
problem, but when aliased seabed overlaps biology, we must also preserve as
much uncorrupted biology from the echogram as possible. We therefore con-
sidered an additional class, biology candidate (ℬ) so that misclassification
could be measured. In our data, Antarctic krill are a key biological target
(Fielding et al., 2014), and previous studies have identified aggregations
using the SHAPES school detection algorithm (Barange, 1994; Coetzee,
2000) using 120 kHz acoustic data. We employed the same technique using
Echoview® to identify ℬ, parameterised after Fielding et al. (2012). Within
Fielding et al. (2012) a 120 kHz - 38 kHz dB window technique was further
applied to identify whether a school was likely to be fish or krill. In our
case we accepted all aggregations as biological. Areas of 𝒪 were determined
as being outside both the original hand-drawn aliased seabed regions. We
used 𝐿(𝑖) = 1 to denote biology, and 𝐿(𝑖) = 0 to denote “other’ ’. Thus,
ℬ = {𝑖 ∣ 𝐿(𝑖) = 1}∀𝑖 and 𝒪 = {𝑖 ∣ 𝐿(𝑖) = 0}∀𝑖.

Stratified, random sampling was applied to the 30 transects to select 5000
examples of each of the three classes 𝒜, ℬ and 𝒪 from each transect giving
a total of 450,000 pixel exemplars. The 30 transects were partitioned into
ten sets, each with three transects. These ten sets formed the ten folds used
for training and testing with cross fold validation. The features available
for each pixel were 38 kHz 𝑆𝑣, 𝜂𝜃, 𝜂𝜙 and 𝑅. 𝑅 was discarded as being
biased because schools detection (and thus ℬ) was limited to the top 250 m
of the water column. All feature data were normalised by removing the
mean and scaling to unit variance when used as input to machine learning
algorithms. Regions of 𝒜 and ℬ typically span more than one pixel, so
we also considered a window around each pixel. An 𝑛 × 𝑛 window 𝑤 was
indexed as 𝑤(⌈1−𝑛

2 ⌉ ∶ ⌊𝑛
2 ⌋, ⌈1−𝑛

2 ⌉ ∶ ⌊𝑛
2 ⌋), with 𝑤(0, 0) being the central pixel.

A principal component analysis (PCA) was applied to determine feature
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vectors explaining most of the variance in the data (Pearson, 1901). The
most important principal components were then used as input to a kNN.
The perceptron, kNN, random forest and MLP were implemented using
scikit-learn (Pedregosa et al., 2011) with default settings unless otherwise
specified. The MLP used two hidden layers of 15 and 7 neurons respectively.
These sizes were chosen based on 15 inputs (the 15 principal components)
and a desire to constrain the output to three classes. A default configuration
using rectified linear unit activation (Nair and Hinton, 2010) and an Adam
solver (Kingma and Ba, 2014) was employed. A CNN was implemented
using Keras (Chollet and others, 2015) and Tensorflow (Abadi et al., 2016).
CNNs offer a wide variety of architecture and configuration options, and so
we chose a design which is typical of demonstration solutions to the MNIST
problem (Figure 5.2).The front end uses convolutional layers and a max
pooling layer for feature extraction. The flatten layer reduces dimensionality
and passes features on to the classifier. A fully connected layer ensures that
all features are weighted. A softmax activation layer reduces the output to
three nodes, each providing a probability for an output class. Dropout layers
help to avoid over-fitting. Three channels were used as input (normalised
𝑆𝑣, 𝜂𝜃 and 𝜂𝜙). We used 12 training epochs per fold.

Classifier performance was evaluated using cross-fold validation, comparing
outputs 𝒜, ℬ̂ and 𝒪 with ground truth 𝒜, ℬ and 𝒪. The probability of
accurate aliased seabed detection is

𝑃(𝒜 ∣ 𝒜) = 𝑁([𝒜𝑖] = [𝒜𝑖])
𝑁([𝒜𝑖])

∀𝑖 (5.3)

The probability of reliable aliased seabed detection is

𝑃(𝒜 ∣ 𝒜) = 𝑁([𝒜𝑖] = [𝒜𝑖])
𝑁([𝒜𝑖])

∀𝑖 (5.4)

The probability that biology is misclassified as aliased seabed is
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num_classes = 3

model = models . S equent i a l ( )

model . add ( l a y e r s . Conv2D(32 , k e rne l_s i z e =(3 , 3) ,
a c t i v a t i o n=”r e l u ” ,
input_shape =(28 ,28 ,3) ) )

model . add ( l a y e r s . Conv2D(64 , (3 , 3) , a c t i v a t i o n=”r e l u ”) )
model . add ( l a y e r s . MaxPooling2D ( poo l_s i ze =(2 , 2) ) )
model . add ( l a y e r s . Dropout ( 0 . 2 5 ) )
model . add ( l a y e r s . F lat ten ( ) )
model . add ( l a y e r s . Dense (128 , a c t i v a t i o n=”r e l u ”) )
model . add ( l a y e r s . Dropout ( 0 . 5 ) )
model . add ( l a y e r s . Dense ( num_classes , a c t i v a t i o n=”softmax ”) )

model . compi le ( l o s s =”spar s e_catego r i ca l_cro s s en t ropy ” ,
opt imize r=”Adadelta ” ,
met r i c s =[” accuracy ” ] )

Figure 5.2: Keras snippet describing the CNN model architecture and con-
figuration.

𝑃(ℬ ∣ 𝒜) = 𝑁([ℬ𝑖] = [𝒜𝑖])
𝑁([𝒜𝑖])

∀𝑖 (5.5)

5.3 Results
Aliased seabed (𝒜), biology (ℬ) and other (𝒪) cannot be separated by
simply thresholding the distributions of 𝑆𝑣, 𝜂𝜃 or 𝜂𝜙 because there is too
much overlap (Figure 5.3a, b and c). The overlapping coefficients (Inman
and Bradley Jr, 1989) for 𝒜 and ℬ are 0.81, 0.86 and 0.86 for 𝑆𝑣, 𝜂𝜃 and
𝜂𝜙 respectively. To determine window sizes, a sensitivity analysis of spatial
averaging, using the mean of an 𝑛×𝑛 window around each pixel and varying
𝑛 to maximise the chi-squared distance between the distributions of 𝒜 and
𝒪, gives 𝑛 = 9 for 𝑆𝑣, 𝑛 = 28 for 𝜂𝜃 and 𝑛 = 52 for 𝜂𝜙. There is still
considerable overlap (𝒜, ℬ is 0.68, 0.21 and 0.39 respectively) (Figure 5.3c,
d and e). As an aside, we note that there are spikes in the SBA distributions
at signed octet values -96, -32, 32 and 96 (Figure 5.3b and 5.3c). These
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appear to be an artefact of the Simrad EK60 instrument and we are unable
to provide an explanation for them3.

The mean is one possible statistical summary of an 𝑛 × 𝑛 window (as used
above), but given a set of 𝑛 × 𝑛 windows, the first principal component ex-
plains the most variance in the set. We therefore conduct a PCA across all
three variables with window size 𝑛 = 28 (Figure 5.4). There is still consider-
able overlap when considering the first and second components (Figure 5.4
columns one and two). Principal components beyond about dimensionality
15 show only minimal explained variance (Figure 5.4 column 3). Cumulative
explained variance shows only a slow convergence to 100 percent (Figure
5.4 column 4). The principal components do not allow linear separability.
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Figure 5.3: Histograms of 𝑆𝑣, 𝜂𝜃 and 𝜂𝜙 for pixels in three classes: aliased
seabed (𝒜), biology candidate (ℬ), and other (𝒪), using all 450,000 pixel
exemplars. The first row considers individual pixels. The second row uses
the mean over a surrounding 𝑛 × 𝑛 window. Window sizes are 𝑛 = 9 for 𝑆𝑣,
𝑛 = 28 for 𝜂𝜃 and 𝑛 = 52 for 𝜂𝜙.

Having shown that simple statistics are insufficient to separate the classes,
3We have seen these spikes in all Simrad EK60 data that we have examined, including

those from three separate research vessels. Simrad have acknowledged this as a instru-
ment defect. Supplementary information is provided in Appendix F
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Figure 5.4: Principal component analysis of 450,000 samples using 28 × 28
windows over 38 kHz data. Column one plots the histograms of aliased
seabed (𝒜), biology candidate (ℬ), and other (𝒪) of the first principal
component of 𝑆𝑣, 𝜂𝜃, 𝜂𝜙 and the combined data. Column two compares the
first and second principal components. Column three shows the explained
variance of the first 30 components. Column four shows the cumulative
variance explained by dimension.

we train a kNN using the first 15 principal components of each sample
(Table 5.3). The overall accuracy of 0.84 ± 0.003 is calculated by dividing
the trace of the confusion matrix by the sum of its elements. The probability
that predicted aliased seabed is indeed aliased seabed (𝑃(𝒜 ∣ 𝒜) = 0.98 ±
0.001 ) and the probability that aliased seabed is identified by the algorithm
(𝑃(𝒜 ∣ 𝒜) = 0.80 ± 0.007 ) are high; while the probability that biology
candidates are misclassified as aliased seabed is low (𝑃(ℬ ∣ 𝒜) = 0.01 ±
0.001 ). We use the same evaluation procedure for all classifiers and compare
performance using these four measures (Table 5.4). We run kNN using 𝑆𝑣
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Table 5.3: Matrices showing results of the kNN classifier with 𝑘 = 35 (de-
termined by searching 0 < 𝑘 < 100 for odd 𝑘), for the three classes aliased
seabed (𝒜), biology candidate (ℬ) and other (𝒪). The first table is a confu-
sion matrix, the second an accuracy matrix showing 𝑃(𝑦 ∣ ̂𝑦) and the third
a reliability matrix showing 𝑃( ̂𝑦 ∣ 𝑦).

Predicted
𝒪 ℬ 𝒜

Actual
𝒪 13972.57 ± 24.987 967.24 ± 22.904 60.19 ± 2.409
ℬ 2996.42 ± 145.906 11839.04 ± 137.546 164.53 ± 15.816
𝒜 1996.71 ± 109.020 976.81 ± 31.094 12026.48 ± 110.610

Predicted
𝒪 ℬ 𝒜

Actual
𝒪 0.74 ± 0.007 0.07 ± 0.001 0.00 ± 0.000
ℬ 0.15 ± 0.006 0.86 ± 0.002 0.01 ± 0.001
𝒜 0.10 ± 0.005 0.07 ± 0.002 0.98 ± 0.001

Predicted
𝒪 ℬ 𝒜

Actual
𝒪 0.93 ± 0.002 0.06 ± 0.002 0.00 ± 0.000
ℬ 0.20 ± 0.010 0.79 ± 0.009 0.01 ± 0.001
𝒜 0.13 ± 0.007 0.07 ± 0.002 0.80 ± 0.007

without SBA and kNN using 𝜂𝜃 without 𝑆𝑣 and find that neither result is
as good as for the combined data.

As a final check for linear separability, we run a linear perceptron, which
does not have good performance (𝑃(𝒜 ∣ 𝒜) = 0.61 ± 0.014 , 𝑃(𝒜 ∣ 𝒜) =
0.62 ± 0.053 and 𝑃(ℬ ∣ 𝒜) = 0.23 ± 0.018 ). Our principal conclusion at
this point is that even though the classes are not easily linearly separable,
all hope is not lost - a simple non-linear classifier gives promising results.

Although the kNN has attractive asymptotic properties, those are only man-
ifest with large quantities of data. However, since 𝑘 = 35 gives the highest
kNN accuracy for 0 < 𝑘 < 100, and the trend appears to be reducing
accuracy with increasing 𝑘 (Figure 5.5).

We can make a crude estimate of the Bayes error of 0.08 ≤ 𝜖 ≤ 0.16
and hence expect the best possible overall accuracy to be between 0.84
and 0.92. The computation of N-dimensional distances and subsequent
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Table 5.4: Summary of classifier performance comparing aliased seabed
detection accuracy (5.3), reliability (5.4) and misclassification of biology
(5.5). The mean and standard error of probabilities are computed over ten
folds (450,000 pixels).

Accuracy Reliability Misclassification Overall accuracy
Method 𝑃(𝒜 ∣ 𝒜) 𝑃(𝒜 ∣ 𝒜) 𝑃(ℬ ∣ 𝒜)
Linear perceptron 0.61 ± 0.014 0.62 ± 0.053 0.23 ± 0.018 0.62 ± 0.009
kNN 𝑆𝑣 0.77 ± 0.027 0.74 ± 0.050 0.19 ± 0.027 0.75 ± 0.016
kNN 𝜂𝜃 0.99 ± 0.002 0.58 ± 0.026 0.01 ± 0.002 0.60 ± 0.008
kNN 𝑆𝑣, 𝜂𝜃 and 𝜂𝜙 0.98 ± 0.001 0.80 ± 0.007 0.01 ± 0.001 0.84 ± 0.003
Random forest 0.93 ± 0.010 0.86 ± 0.019 0.04 ± 0.007 0.85 ± 0.007
MLP 0.95 ± 0.007 0.87 ± 0.020 0.03 ± 0.005 0.87 ± 0.006
CNN 0.96 ± 0.019 0.89 ± 0.022 0.02 ± 0.010 0.90 ± 0.007
Algorithm 0.96 ± 0.010 0.77 ± 0.021 0.02 ± 0.009
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Figure 5.5: Overall accuracy, for the kNN by 𝑘. Note the turning point at
𝑘 = 35 and declining accuracy with increasing 𝑘 thereafter. 𝑚 is the total
number of samples. For comparison, we also show the curve calculated with
𝑚
2 samples. As 𝑚 → ∞, accuracy declines more slowly with increasing 𝑘
owing to the 𝑘 nearest neighbours being closer in n-dimensional space.
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sorting can make kNN very computationally expensive at run time, so we
now consider more efficient classifiers. Random forest and MLP applied
to the first 15 principal components show small improvements in overall
accuracy compared to kNN but demonstrate that classification is practical
with acceptable performance (Table 5.4). The CNN is capable of using the
whole window (28 × 28) as input rather than just the principal components.
With an overall accuracy of 0.90, approaching the upper bound of our Bayes
accuracy estimate (0.92), the CNN is the best performing classifier.

Up to this point we have been considering the operation of machine learning
algorithms which are created automatically from the training data. How-
ever, as is common with machine learning algorithms, there is no easily
accessible explanation of why they perform well or poorly. To explore this,
we consider example windows from 𝒜, ℬ and 𝒪 and compare their projec-
tions into principal components (Figure 5.6). Principal components 1 to
15 for the combined feature vector [𝑆𝑣, 𝜂𝜃, 𝜂𝜙] are used to reconstruct the
images. The effect is to smooth the images. The 𝒜 example has a strong
response in both 𝑆𝑣 and 𝜂𝜃, ℬ has a strong response in 𝑆𝑣 but not in 𝜂𝜃 and
𝒪, no response in either. Whilst the presence or absence of signal in either
𝜂𝜃 or 𝜂𝜙 would seem to differentiate 𝒜 from 𝒪, we know that the angular
data are noisy (Figure 5.4) and, taken alone, are insufficient to give good
machine learning results (Table 5.4). This leads to the intriguing possibility
that we might find areas of strong 𝑆𝑣 and only consider them to be aliased
seabed if there is a correspondingly strong signal in either 𝜂𝜃 or 𝜂𝜙.

The patterns seen in 𝜂𝜃 and 𝜂𝜙 are difficult to segment because of noise.
Pixel values vary between -128 and 127 and so we take the mean-squared
over a moving window to smooth the image and accentuate coherent signal
(window sizes determined using the earlier chi-squared distance analysis).
Whilst these pixels fall within the aliased seabed regions, only a small per-
centage of area is identified. However, we can take these pixels and then
examine the surrounding region in 𝑆𝑣. Hence, we derive a five-step algo-
rithm:
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Figure 5.6: 28×28 images of volume backscatter 𝑆𝑣 and along-ship angle 𝜂𝜃
for each of the three classes: other (𝒪), biology candidate (ℬ), and aliased
seabed (𝒜). Also shown are the reprojections of each image from the first
15 principal components.

1. Find the mean squared of a 28×28 moving window over 𝜂𝜃 and select
cells > 𝑇𝜃 to produce a mask 𝑚1;

2. Find the mean squared of a 52×52 moving window over 𝜂𝜙 and select
cells > 𝑇𝜙 to produce a mask 𝑚2;

3. Combine the masks 𝑚 = 𝑚1 ∨𝑚2 (where ∨ is the logical or operator);

4. Select pixels from 𝑆𝑣 using the mask, 𝑚 and determine the median
𝑆𝑣 value of the selection to use as a threshold 𝑇 ;

5. Select regions from 𝑆𝑣 where 𝑆𝑣 > 𝑇 and which intersect 𝑚. The
resulting mask is the union of the selected regions and 𝑚.

The final mask is a grid indicating those pixels that have been classified as
aliased seabed. It can be used to label aliased seabed pixels in the original
echogram or to replace them, using a suitable token (e.g. -999) indicating
“no data” or “missing value”.

We would like to maximise the algorithm’s accuracy and reliability, but the
choice of 𝑇𝜃 and 𝑇𝜙 is a compromise, (on the one hand, choosing many
pixels in an echogram gives high reliability and poor accuracy, on the other
hand, choosing only few aliased seabed pixels gives high accuracy and poor
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reliability). We generally prioritise accuracy over reliability to avoid mis-
classification of biology. Using the mean squared distributions of 𝜂𝜃 and 𝜂𝜙
from our test data, we select values for each percentile and plot 𝑃(𝒜 ∣ 𝒜) ,
𝑃 (𝒜 ∣ 𝒜) and 𝑃(ℬ ∣ 𝒜). We find that the 80th percentile values 𝑇𝜃 = 702
and 𝑇𝜙 = 282 give similar accuracy and misclassification results to the CNN
at the expense of some reduction in reliability. The results from the CNN
and this final algorithm are compared in Figure 5.7 and Table 5.4. The
hand-drawn aliased seabed has an area of 213470 pixels. Otsu’s method re-
duces this to 125599 pixels and the final mask from the algorithm is 178399
pixels.

5.4 Discussion
Aliased seabed is typically removed by manual scrutinization of echograms
and we use this technique, along with biological data determined using
the SHAPES algorithm (Barange, 1994; Coetzee, 2000), to assemble sam-
ples with which to explore automated discrimination methods. We are
unable to discriminate aliased seabed from biology using simple threshold-
ing of either volume backscatter or split-beam angle at a single pixel level
or with spatially averaged data. Instead we apply machine learning algo-
rithms using both volume backscatter and split-beam angle and show that
non-linear classifiers can accurately identify aliased seabed. A CNN gives
the best aliased seabed detection performance (accuracy 0.96, reliability
0.89). Aliased seabed removal is usually undertaken prior to biology detec-
tion methods and so minimising misclassification of biology is important
(the CNN misclassification is 0.02). Other deep learning architectures and
hyperparameter tuning could yield accuracy improvement, but we show that
the CNN described is already performing close to our estimate of the Bayes
error which we determine using a kNN. When the classifiers are run on vol-
ume backscatter alone or split-beam angle alone, we find that they do not
achieve the same performance as when using the combined data.

Our manually drawn regions of aliased seabed tend to be larger than strictly
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necessary because of the difficulty and labour in tracing irregular shapes (the
hand-drawn mask in Figure 5.1, is about 20% larger than the final mask in
Figure 5.7). We crudely refine the region boundaries using Otsu’s method,
commonly used in image processing, and this technique could be applied
more widely during scrutinization of echograms. Even so, the boundary
between overlapping aliased seabed and biology may be impossible to deter-
mine and our “ground truth’ ’ is subjective. This may explain the reliability
of our aliased seabed detection algorithms being lower than their accuracy
(Table 5.4). Speckle is seen in some aliased seabed detections (Figure 5.7c),
also reducing the reliability scores. This can be removed using a hole filling
image processing algorithm (e.g. morphological reconstruction (Soille, 2013),
as used by MATLAB imfill). Visual inspection of echograms shows that our
automated results find several instances of aliased seabed that had not been
identified in the ground truth dataset. On further inspection these appear
to be genuine and, in some cases, are fainter aliases caused by the echoes
from antepenultimate pings. More precise delineation of aliased seabed will
improve survey accuracy and reduce misclassification of biology.

We have some reservations about the use of machine leaning algorithms
which are usually applied in a “black box manner’ ’, with no information
provided about what exactly makes them arrive at their predictions (Samek,
Wiegand and Müller, 2017). Whilst human operators can reason about
previously unseen inputs, there is no way to be confident that a machine
learning algorithm will interpolate or extrapolate in a reasonable manner for
data that are significantly different to training samples (Lake et al., 2017),
(in our case, we consider data from five survey years). Machine learning
algorithms can be complex to implement in simple scripting languages such
as those provided by commercial hydroacoustic processing software. The
computational demands can be beyond the limits of small, low power pro-
cessors which are common in marine autonomous vehicles and embedded
systems. Classical algorithms have the advantage of being more transparent,
understandable and debuggable.

There is a strong, legitimate desire for algorithms based on physical princi-
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ples, but also a need to show that such algorithms are accurate and reliable.
We use machine learning to explore the performance that can be expected,
and to estimate an upper bound on optimality so that new algorithms can
be evaluated. Furthermore, we show that machine learning and exploratory
data analysis can inform algorithm design (e.g. in our case, varying fea-
ture extraction shows the importance of using both 𝑆𝑣 and split-beam data;
physical principles are confirmed by seeing reprojections of the PCA; window
sizes are determined by chi-squared distance; and thresholds by comparison
with CNN performance). Machine learned algorithms can be run over large
datasets to find additional example cases that can be studied to gain more
insight into a particular phenomenon. Whilst it is easy to dismiss machine
learning methods, we show their utility as a methodology for algorithm
development.

Our final algorithm is simple to implement and efficient in terms of com-
putational resources. The windowing operations can be implemented using
two-dimensional convolution which is fast on modern hardware (the exam-
ple in Figure 5.7 takes about 0.43 s on a 2016 Intel Skylake i7 processor).
Whilst the algorithm does not rely on other noise removal strategies beyond
true seabed removal, its performance can reduce if the data include impulse
noise, transient noise or attenuated signal. In these cases, the methods de-
scribed by Anderson, Brierley and Armstrong (2005) and Ryan et al. (2015),
combined with interpolation (e.g. median filtering) to replace the noise, are
an effective preprocessing step. If using background noise removal (e.g. De
Robertis and Higginbottom, 2007), we recommend implementing this after
aliased seabed detection. Aliased seabed is an additive backscatter corrup-
tion, so the algorithm assumes that the area surrounding an alias is likely
to have a lower backscatter than the alias. The backscatter threshold (𝑇 ) is
determined dynamically, making the algorithm less sensitive to calibration
correction accuracy. The median is used to determine backscatter threshold
(𝑇 ), being less susceptible to outliers than the mean. Whilst the algorithm is
not machine-learned, the accuracy of aliased seabed detection and misclassi-
fication of biology are comparable to the best performing machine learning
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algorithm (the CNN), albeit with reduced reliability (Table 5.4).

We want our method to be independent of ping interval (𝐼𝑇 ) and logging
range (𝑅𝐿), and so we choose to use a single frequency. We are also in-
terested in using data from ships of opportunity (e.g. fishing vessels) which
may only have a single frequency. However, if multi-frequency data are
available then, depending on maximum range (𝑅𝑚𝑎𝑥) and seabed depth
(𝑅𝑆), other frequencies can be used to further validate aliased seabed. (E.g.
if an aliased seabed candidate was observed at 500 m in 38 kHz data, with
ping interval 𝐼𝑇 = 2𝑠 then, using (5.1), seabed depth 𝑅𝑆 = 2000 m. If
a corresponding signal was seen in 70 kHz data, then the maximum range
(𝑅𝑚𝑎𝑥) would be insufficient to reach the seabed, and so the signal must
have another cause). Lower frequency data could allow 𝑅𝑆 to be detected
automatically and allow the methods of Renfree and Demer (2016) to be
used as part of a hybrid approach. A consequence of (5.1) is that 𝑅𝑆 ≮ 𝑅𝐿
and so aliased seabed cannot occur in a ping where the true seabed has
already been detected.

Using split-beam angle in addition to volume backscatter is known to im-
prove bottom detection (MacLennan et al., 2004; Bourguignon et al., 2009).
Large coherent patterns in SBA are a strong indication of reflections from
the seabed, but not biology. We extend this observation to aliased seabed
and use it to create an automated algorithm providing consistent, repeat-
able results. We have tested the algorithm with Simrad EK60 data, which
uses a four quadrant, split-beam configuration. Some new transducers use
a three-sector design, however we expect the principles to be transferable.
The split-beam angle threshold values, 𝑇𝜃 and 𝑇𝜙, and the convolution win-
dow sizes presented here, are determined from data collected around South
Georgia, where the seabed substrate consists of fine-grained sediments and
clays and there is rapid change in bathymetry (Hogg et al., 2016). Although
we designed the algorithm for aliased seabed detection, mutatis mutandis,
it may also have applications as a bottom detector.

Ocean observing systems using acoustic sensors on ships of opportunity
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(e.g. fishing vessels, Kloser et al., 2009) and marine autonomous vehicles
(Guihen et al., 2014) are becoming more common, leading to increased data
volumes. New broadband acoustic systems collect even more data. Manual
processing has already become “overwhelming’ ’ and large-scale automated
analysis is challenging (Wall, Jech and McLean, 2016). The methods de-
scribed are a first step towards automated, unsupervised aliased seabed
detection and removal,

5.5 Future work
Deep learning in image processing is known to be more effective when using
larger quantities of labelled training data (Sun et al., 2017). The pedagogical
ImageNet database contains one million images, but this study used only
thirty available labelled transects. A larger set of labelled training data
should be assembled if we are to further improve accuracy and reliability.

Seabed aliases are large scale features and human detection is based on
shape, size and proximity to the true seabed. A CNN with a multi-scale
retina may allow this additional context to be represented, and may improve
accuracy and reliability.

Transferability of these algorithms to other vessels and other ocean areas
has not yet been demonstrated. This study used training data from a single
vessel, but future training data should include representative examples from
other vessels and ocean areas.

5.6 Next steps
Having shown how machine learning can be used to automate processes
previously thought to require human intervention, in the next chapter we
construct a fully autonomous acoustic data processing system.
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Figure 5.7: Detection and removal of aliased seabed. (a) is the original
echogram, (b) “ground truth” created by applying Otsu’s algorithm to the
hand-drawn mask, (c) aliased seabed probability determined by the CNN,
(d) aliased seabed determined using the algorithm, and (e) the echogram
with aliased seabed, from the algorithm, removed.
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Chapter 6

RAPIDKRILL: Real-time
reporting of fisheries acoustic
data

“Scientists investigate that which already is; engineers create
that which has never been.”

Albert Einstein

In this chapter, we build a proof of concept autonomous, unsupervised, real-
time reporting system (RAPIDKRILL), that is intended initially for fishing
vessels. We explore requirements for hardware and software components
and present a system design that is informed by earlier chapters.

Robert Blackwell came up with the original concept for a small, low cost add-
on to an echosounder that would summarise acoustic data in real time, un-
dertook systems integration and helped assemble the RAPIDKRILL demon-
strator. He contributed to the design and development of Echopy1 and
RAPIDKRILL2 software. The RAPIDKRILL prototype system was demon-
strated at the Working Group for Fisheries Acoustics Science and Technol-
ogy (WGFAST) 2019 in Galway, Ireland.

1https://github.com/bas-acoustics/echopy, accessed April 2020.
2https://www.bas.ac.uk/project/rapidkrill, accessed April 2020.
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EchoJulia3 was developed by Robert Blackwell and was presented at the
Julia Conference 2018 in London.

6.1 Introduction
Dynamic ocean management uses near real-time data to manage changes
rapidly in space and time in response to the shifting nature of the ocean
and its users (Maxwell et al., 2015). Ocean resource managers must balance
marine resource protection with sustainable use (e.g. fishing), but marine
habitats can change rapidly. Advances in data collection and sharing, par-
ticularly in remote sensing, are enabling reactive and adaptive management
strategies where changes can be implemented quickly in response to chang-
ing conditions.

The Commission for the Conservation of Antarctic Marine Living Re-
sources (CCAMLR) uses a precautionary ecosystem management approach
(Kock, 2000) with fixed catch limits applied to the Antarctic krill fishery.
CCAMLR would like to develop a more timely, dynamic feedback manage-
ment approach but there are high levels of spatial and temporal variability
leading to uncertainty in the structure and operation of the ecosystem
(Hill, Phillips and Atkinson, 2013). Data are collected by national science
and scientific observer programmes, but these data can take substantial
time and effort to process, delaying management reports.

Marine Autonomous Vehicles (MAVs) are increasingly being used to survey
marine ecosystems with additional spatial and temporal resolution (Testor
et al., 2019). One of the appeals of MAVs is directing them to regions of
interest and receiving data in real-time (e.g. Klinck et al., 2012 use Seaglid-
ers to receive near real-time information about beaked whales). A wide
range of sensors and instruments can be deployed (e.g. to measure temper-
ature, salinity and turbulence) with data being relayed to ground stations
via satellite communication networks. MAVs carrying active acoustic sen-
sors (echosounders) are used for ecosystem research but high data volumes

3https://echojulia.github.io, accessed April 2020.
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present challenges for data communication (Guihen et al., 2014). Sensors
currently store data locally for retrieval and analysis once the vehicle is
recovered, delaying publication of results.

Acoustically derived summary metrics such as Nautical Area Scattering
Coefficient (NASC), backscatter density, abundance and distribution have
been shown to be useful ecosystem descriptors (Urmy, Horne and Barbee,
2012, Chapter 4), but to transmit these in real-time requires that they first
be computed onboard the vehicle. This computation requires a computer,
running unsupervised acoustic processing software, to be attached to the
echosounder (Benoit-Bird et al., 2018). MAVs are typically power, size and
weight constrained, and we would like to minimise battery consumption,
size and weight of the instrument payload.

Acoustic data processing is usually undertaken by experts using interac-
tive, desktop software. Echoview® (Echoview Software Pty Ltd) and LSSS
(Korneliussen et al., 2016) are commonly used, but neither are designed to
run autonomously in embedded, unsupervised environments. That has not
stopped scientists from trying (e.g. Benoit-Bird et al., 2018)!

Embedded software systems, such as those deployed in scientific instru-
ments, are usually written in low level languages such as C, C++ or assem-
bly language. Most scientists are more familiar with high level, high pro-
ductivity, scientific and statistics languages (including MATLAB, Python
and R). This leads to the so-called two-language problem, where scientific
software is often written by a scientist in a high-level language and then
reimplemented by a software engineer in a low level language such as C,
C++ or FORTRAN, for speed and resource efficiency. Julia is a high-level,
high-performance dynamic programming language for numerical computing,
initially developed at MIT, that claims to solve the two-language problem
(Bezanson et al., 2017).

The Python programming language has become a popular tool for scientific
computing and statistics (McKinney, 2010), and libraries are starting to
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emerge for fisheries acoustics (e.g. Echopype4; PyEcholab5). Python is ac-
cessible and convenient for a broad audience, including scientific researchers,
and can be used to write programs which automate repetitive analysis tasks.
There is growing interest in the use of Python for fisheries acoustic data pro-
cessing (ICES, 2018).

Intel based PC computer systems running the Microsoft Windows operating
system have typically been used for echosounder applications (e.g. Benoit-
Bird et al., 2018). These systems can be large, expensive and have high
power consumption, making their use challenging in MAVs. Low cost,
system-on-chip computers such as the Raspberry Pi6 are increasingly be-
ing used for so-called Internet-of-things (IOT) applications, where devices
with sensors and actuators are connected to the Internet (Upton and Hal-
facree, 2014; Vujović and Maksimović, 2015). These devices typically use
the Linux operating system which is highly customisable and runs a wide
variety of software.

Satellite communication has a reputation for being expensive, but protocols
such as Iridium Short Burst Data (SBD) allow transmission of small, low
cost messages (Lysogor, Voskov and Efremov, 2018). Mobile originated mes-
sages of up to 340 bytes in length can be sent for less than £0.15. Low cost
development kits such as the Rock Seven RockBlock7 are readily available.

In this chapter, we survey existing fisheries acoustic software tools and
develop new, open-source software libraries for fisheries acoustic data pro-
cessing. We test the performance of sample programs and demonstrate
a prototype, unsupervised system running on a small system-on-chip com-
puter (a Raspberry Pi) that could be deployed in unsupervised, autonomous
settings.

4https://echopype.readthedocs.io/en/latest/, accessed April 2020.
5https://github.com/CI-CMG/pyEcholab, accessed April 2020.
6Raspberry Pi Foundation, https://www.raspberrypi.org, accessed April 2020.
7https://www.rock7.com/products-rockblock, accessed April 2020.
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6.2 Materials and methods

6.2.1 Software

We looked at existing acoustic data processing software, as well as software
development systems as part of a “buy or build” assessment. Our initial
software requirements are shown in Table 6.1.

Table 6.1: Requirements for real-time acoustic data processing.

Requirement Notes
Open Able to use and modify software without undue cost or re-

striction.
Fast Computation must keep pace with data availability.
Efficient Having low computational resource requirements in terms of

memory, processor and storage.
Capable Having the facility for active acoustic data processing.
Extensible Allowing experimentation with different acoustic processing

algorithms.
Portable Run on a wide variety of hardware platforms.
Documented Understandable and customisable.
Low cost Low runtime cost to allow widespread deployment.

We compiled a list of fisheries acoustic software tools from the literature,
word-of-mouth and web-based searches, noting their characteristics and li-
censing terms. One hundred journal papers matching the search term “fish-
eries echogram”, published after 2009 in the ICES Journal of Marine Science,
were examined (Appendix H). A paper was attributed to a software tool if
that software tool occurred at least once in the paper. If a paper contained
more than one software tool, it was attributed to all software tools present.

None of the fisheries acoustic software tools met our exact requirements,
and so we decided to develop custom software. The RAPIDKRILL project
is a collaborative effort involving a team of scientists, and the consensus was
to use Python for the prototype, primarily due to existing skills and interest
in Python amongst the fisheries acoustics community. Even so, we wanted
to compare the performance of Python based programs with equivalent
Julia based implementations. Two simple programs were implemented to
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read Simrad EK60 RAW files and calculate mean volume backscattering
coefficient, first using Python 3.7.5 and PyEcholab and second using Julia
1.3.1 and SimradEK60.jl. We tested the Julia software using both 32 bit and
64 bit arithmetic. Execution times were recorded running on an Intel(R)
Core(TM) i5-8400 CPU @ 2.80GHz (2018) system using the Linux time
command8.

The Python prototype reads EK60 data, and corrects for noise before cal-
culating and transmitting summary statistics. Although we demonstrated
sufficient accuracy and precision using 32 bit arithmetic (Chapter 2), the
prototype was forced to use 64 bit arithmetic because of the dependency
on PyEchoLab software. The noise removal strategy was informed by the
experiments in Chapter 4 and the sensitivity of results to noise reported
in Section 4.6.2: Impulse Noise (IN), defined as noise “spikes” of less than
one ping in duration, was identified with a two-sided comparison method
using a resolution of 5 m vertical bins and a 10 dB threshold (Ryan et al.,
2015). Attenuated Signal (AS), defined as signal of lower amplitude due
to bubbles, was identified by comparing the deviation of each ping from 𝑆𝑣
data within the 100 to 200 m range, using a 30 ping average and −6 dB
threshold (Ryan et al., 2015). Samples detected as noise were regarded as
“empty water” and replaced with −999 dB which is approximately 0 in the
linear domain. The impact of seabed reflections was mitigated by only op-
erating with offshore, deep water samples (selected based on bathymetry).
The risk of aliased seabed (ASB) was mitigated by using 120 kHz data which
is less prone to ASB (Chapter 5).The RAPIDKRILL project is concerned
with measuring Antarctic krill abundance, and in Chapter 4 we showed
that volume backscattering strength (𝑆𝑣) is a reasonable proxy for krill den-
sity. We therefore used the SHAPES algorithm (Barange, 1994; Coetzee,
2000) to segment areas of echograms most likely to be krill and summarised
these using nautical area scattering coefficient (NASC) derived from 𝑆𝑣
(6.1), where 𝑇 is mean thickness of the domain being integrated. Summary

8The Linux time command manual page, https://linux.die.net/man/1/time, accessed
April 2020.
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results were transmitted to shore based systems via email (if a TCP/IP
network was present) or using the Iridium Short Burst Data (SBD) service.
All echosounder data were recorded on an attached disk drive connected via
Universal Serial Bus (USB).

NASC = 4𝜋 × 18522 × 10𝑆𝑣
10 × 𝑇 (6.1)

Unit testing, where components are tested individually (Runeson, 2006),
and integration testing, where components are combined and tested as a
group (Leung and White, 1990), were used to help ensure correct operation
of the software as the project progressed. All tests used data recorded in
the Southern Ocean as part of the British Antarctic Survey Ecosystems
programme (Cruises JR2309 and DY098).

6.2.2 Hardware

Our objective was to assemble a bench-based prototype system with a com-
puter connected to an echosounder that could be used for development,
testing and experimentation. Our initial computer system requirements are
shown in Table 6.2.
The power consumption (in Watts) of a Raspberry Pi Model 3 B+ was
compared with an Intel Core i5 based laptop using an Energenie 429.856UK
power meter. The systems were measured under low CPU load (in an idle
state) and under high CPU load (using the stress –cpu 4 command under
Linux).
A Raspberry Pi Model 3 B+ computer running the Linux operating sys-
tem was selected to build the prototype. A RockBLOCK Iridium SBD
transceiver and antenna was used to experiment with satellite communica-
tion and networking.

9https://github.com/bas-acoustics/krill-ball, accessed April 2020.
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Table 6.2: Requirements for a computer to be connected to an echosounder
for real-time acoustic data processing.

Requirement Notes
Low power Able to run on battery power for a number of days.
Small Capable of being deployed within an autonomous vehicle.
Open Able to run custom operating systems and software without

additional fees.
Capable Having sufficient computational resources for acoustic process-

ing.
Headless Able to run without a display and without operator interven-

tion.
Extensible Able to add custom hardware and sensors.
Documented Understandable and customisable.
Low cost Affordable for multiple deployments.

6.2.3 Echosounder integration

Simrad provide a data subscription facility using extensible markup lan-
guage (Simrad, 2012). After experimentation, we found that the data avail-
able are only a subset of those provided in the underlying Simrad RAW
files. We considered intercepting and reverse engineering the echosounder’s
communication (which uses the User Datagram Protocol10), but were dis-
couraged from so doing by license terms.

Instead, we chose a simple file sharing mechanism where the Raspberry Pi
exposed part of its file system using the Server Message Block (SMB) pro-
tocol11 to which the echosounder could write. Data files were then detected
using a simple polling mechanism and processed on arrival.

Using echosounders in an office environment is inconvenient and so we
used Simrad ER60 software running on a PC, in place of a Simrad EK60
echosounder, to “replay” real data recorded on earlier ship-based surveys.

10Internet Standard RFC768, J. Postel, https://tools.ietf.org/html/rfc768, accessed
April 2020.

11The Server Message Block (SMB Protocol) https://msdn.microsoft.com/en-us/libra
ry/cc246482.aspx, accessed April 2020.
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6.2.4 Communication network

We tested two forms of data network from the Raspberry Pi: Iridium SBD
(using a Rock Seven RockBlock transponder) and email (simulating a ship’s
broadband satellite connection). For SBD we used the MessagePack proto-
col12 to compress data. For email, we sent comma separated value (CSV)
files using SendGrid13.

6.2.5 Prototype

The prototype system consists of a Raspberry Pi computer connected to
a Simrad ER60 PC (in place of an echosounder). Acoustic data files are
processed, with summary metrics displayed on the screen and relayed to a
land station via email or SBD (Figure 6.1). The bill of materials for the
prototype is shown in Table 6.3.

Table 6.3: RAPIDKRILL bill of materials. Prices in GBP exclude VAT and
are correct as of January 2020. Iridium SBD messages are less than £0.05
when purchased in bulk.

Item Quantity Unit Price Total
Raspberry Pi 3 Model B+ 1 28.39 28.39
32GB Micro SD card 1 8.43 8.43
Raspberry Pi power supply 1 6.45 6.45
Raspberry Pi 7-inch touchscreen 1 48.75 48.75
Edimax USB3 to Ethernet adapter 2 18.97 37.94
CAT 6 RJ45 2m cable 2 4.96 9.92
Rock Seven RockBlock 9602 Iridium SBD transceiver 1 175.00 175.00
FTDI/USB cable 1 19.00 19.00
Iridium SBD messages 200 0.11 22.00

Total £355.88

6.3 Results
Of the 100 journal papers analysed, Echoview was used for analysis in 48
papers, LSSS in 11 and MOVIES in 4. Table 6.4 contains a list of all

12https://msgpack.org, accessed April 2020.
13https://sendgrid.com, accessed April 2020.
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Figure 6.1: RAPIDKRILL Vessel Data and analysis System which reads
data from a Simrad EK60 echosounder, logs it to a memory card and sends
summary ecosystem indicators via an Iridium Short Burst Data satellite
communication system or ship’s Internet to scientists and fisheries man-
agers.

echosounder processing software compiled during our research.

Of our programs calculating mean volume backscattering strength (𝑆𝑣), the
Julia program using 32 bit floating point arithmetic was fastest, and the
Python program slowest (Table 6.5). The Python program took more than
four times the real (elapsed) time to run. The Raspberry Pi computer used
20% of the power used by the PC when idling, and 17% at full load (Table
6.6).

A RAPIDKRILL prototype system was demonstrated at the Working Group
for Fisheries Acoustics Science and Technology (WGFAST) 2019 in Galway,
Ireland14, summarising Simrad EK60 data as binned Nautical Area Scatter-
ing Coefficient (NASC).

14A video is available at https://www.youtube.com/watch?v=_PAiWBJLqWo
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Table 6.4: List of fisheries acoustic data processing tools.

Software License Language Notes
BEI Commercial? C Described in Knudsen (1990). Superseded by LSSS.
echogram Unspecified R Echogram Visualisation and Analysis (https://github.com/hvillalo/echogr

am).
Echopype Apache Python? Enhancing the interoperability and scalability in analyzing ocean sonar data

(https://github.com/OSOceanAcoustics/echopype).
Echoview Commercial C++? Hydroacoustic visualization and analysis software (https://www.echoview.c

om).
EchoviewR GNU GPL R A free interface between Echoview and R using COM scripting (https://gith

ub.com/AustralianAntarcticDivision/EchoviewR).
ESP3 MIT MATLAB Acoustic data processing software (https://bitbucket.org/yladroit/esp3)
Hermes Closed source Hydroacoustics Efficient Recording Module for EchoSounders (https://bit.ly

/39Rh2c4)
LSSS Commercial Java? Large Scale Survey System (https://www.marec.no
Matecho ? MATLAB Integrated and supervised Matlab processing chain (https://bit.ly/2SHRQ

Pm).
MOVIES - - Acoustic processing software described in Weill et al. (1993).
MOVIES3D Closed source Display echosounder data in a 3D environment described in Trenkel et al.

(2009) (https://bit.ly/39Rh2c4)
PyEcholab Unknown Python Toolkit for reading, processing, plotting and exporting fisheries acoustic

echosounder data (https://github.com/CI-CMG/pyEcholab).
readHAC Unspecified R Read acoustic HAC format files (https://github.com/kaskr/HAC).
SonarX Commercial ? Post processing tools(http://folk.uio.no/hbalk/sonar4_5/index.htm).
EchoJulia MIT Julia Hydroacoustic data processing software in Julia (https://github.com/EchoJul

ia)
Echopy MIT Python Fisheries acoustic data processing in Python (https://github.com/bas-acoust

ics/echopy).

Table 6.5: Performance of Python and Julia programs used to calculate
mean volume backscattering coefficient.

Program Real (m:ss) User (s) Sys (s) Mem (KB)
Python 11:59.51 1756.16 34.97 351376
Julia (64 bit floating point) 2:46.04 100.19 13.87 349728
Julia (32 bit floating point) 2:27.42 88.12 12.34 292264

Table 6.6: Power consumption (in Watts) of a Raspberry Pi 3 B+ and an
Intel Core i5 laptop during idle and under high processor load.

Computer State Power
Raspberry Pi Model 3B+ Idle 3
Raspberry Pi Model 3B+ Load 6
PC Idle 11
PC Load 34
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6.4 Discussion
There are already a variety of tools and software libraries for fisheries acous-
tic data processing (Table 6.4). The Bergen Echo Integrator (BEI, Foote
et al., 1991) and MOVIES (Weill, Scalabrin and Diner, 1993) were amongst
the earliest general-purpose systems, but Echoview and LSSS are amongst
the most popular systems used today. Some recent systems are designed to
allow custom software to be written: readHAC and echogram (Villalobos,
2017) use the R programming language; EchoviewR provides a bridge be-
tween R and Echoview software (Harrison et al., 2015); Matecho and ESP3
are implemented using MATLAB; PyEcholab and Echopype use Python.

Neither Echoview nor LSSS use open source software licences. Fisheries
scientists rely on the accuracy and reliability of results from Echoview and
LSSS, and whilst their methods are well documented, the source code for
their implementation cannot be inspected or easily subjected to the scientific
process. The software cannot be customised without recourse to the original
developers. The open source software systems listed in Table 6.4 can be
inspected and freely modified. However open source software may not be
as mature, well supported, or maintained. Scientific open source software is
often created by individuals and research groups and may not have the same
range of features, or be tested to the same degree as commercial software.

None of these systems completely met our requirements and so we decided
to build new software for RAPIDKRILL. We also wanted to experiment
with image processing techniques (Chapters 2 and 3). Our research group
already had experience with the Python programming language, and so we
initially chose to use PyEcholab to read acoustic data and develop a new
library, Echopy, for acoustic data processing. Echopy now includes a range
of methods for noise removal and summarisation. Echopy may also have
applications in so-called “Big Data” (Mayer-Schönberger and Cukier, 2013)
processing of historic and very large archived acoustic data sets.

Software development is time consuming and can be expensive. The bill
of materials (Table 6.3) does not include the software that was developed
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by scientists during the project. We estimate that the true cost of software
development, if undertaken by a commercial organisation would be in excess
of £100k.

Although early versions of the software functioned correctly, we had to care-
fully program RAPIDKRILL to ensure that it was fast and efficient enough
to run on a Raspberry Pi. Performance analysis prompted us to optimise
code. We also considered alternative software development systems, and
found that a Julia program used to calculate mean volume backscattering
coefficient, was four times faster than the equivalent Python code. Julia has
been designed to exploit type inference in its compiler, often allowing more
efficient code generation than with traditional dynamically typed languages
(Bezanson et al., 2017). Poor performance in embedded software on ma-
rine autonomous vehicles could waste battery power. Julia is interoperable
with other programming environments and can call C, C++, Python or R
code directly. Future versions of RAPIDKRILL could use Julia for perfor-
mance critical code, without necessarily reimplementing the whole software
system.

According to the Technology Readiness Level scale (Mankins, 1995), the
RAPIDKRILL demonstration system is at TRL 4 (Component and/or
Breadboard Laboratory Validated). Whilst the system is not mature
enough for deployment, it has proved useful for experimentation and
exploration of the challenges posed by autonomous, unsupervised fisheries
acoustic data processing.

The Raspberry Pi computer is physically smaller and consumes less electri-
cal power than a PC based system. Whilst a PC has more computational
capacity, the Raspberry Pi was able to keep pace with the echosounder, de-
livering summary information in near real-time. Benoit-Bird et al. (2018)
report a doubling of power consumption by adding a Windows PC to a
Simrad echosounder on a Slocum glider. Our results show that a small
system-on-chip computer could reduce these power requirements compared
to a PC. Embedded systems technology is developing rapidly with further
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reductions in power expected. The software could also be further optimised
to reduce power consumption (for example, by converting more of the code
to the Julia programming language).

Connecting the computer with the echosounder was the most troublesome
part of the project and still has reliability issues. We tried using the Sim-
rad provided subscription method but found this only provided a subset of
the required data. We considered intercepting and reverse engineering the
user datagram protocol packets, but this would have contravened licensing
terms. We eventually used a rudimentary file sharing and polling mecha-
nism, but this is fragile and prone to stop working if there is a network
interruption. A more reliable system will be required as we develop the
system further. Discussions with Simrad suggest that better publish and
subscribe mechanisms are likely to be made available in future echosounder
software versions.

RAPIDKRILL shows that bench-based prototype marine science systems
can be developed quickly and cheaply to allow experimentation. Low cost,
system-on-chip computers and satellite communication devices are readily
available and straightforward to integrate. RAPIDKRILL has allowed us
to test the principles of operation of an automated, unsupervised active
acoustic processing system without the costs associated with marinisation
and deployment. We hope that with additional investment, the system
can be further developed. Initial deployments are expected to be onboard
research vessels and fishing vessels. The system could be extended for use
with a wide variety of marine autonomous vehicles.

125



Chapter 7

Conclusions and future work

“If I have not seen as far as others, it is because giants were
standing on my shoulders.”

Hal Abelson

In Chapter 2, we showed that generic data compression programs (e.g ZIP)
are insufficient to allow transmission of raw acoustic data using current
maritime communication technology. Echosounders generate very large
amounts of data. General purpose compression algorithms deliver compres-
sion ratios of < 3, which is helpful for data storage onboard a ship where
disk space can be at a premium. However, ratios numbered in hundreds
or more are required to even consider lossless acoustic data transmission
using low bandwidth networks. Satellite communication is often the only
practical method for relaying data from remote areas such as the South
Atlantic. New low earth orbit broadband satellite systems are being de-
ployed (e.g. Iridium NEXT1; STARLINK2), but these are unlikely to solve
the problems posed by marine autonomous vehicles. STARLINK is likely to
be targeted at urban areas only, and both systems require stable antenna
systems which are difficult to achieve at sea on small vehicles.

Some fisheries acoustic applications store samples as 64 bit floating point
1https://www.iridiumnext.com/, accessed April 2020.
2https://www.starlink.com/, accessed April 2020.
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numbers, but 32 bit floating point numbers halve the data size (Section 2.3).
Reduced numeric precision is a form of lossy compression, but our results
show that 32 bit floating point arithmetic is adequate when working with
data from Simrad EK60 echosounders.

Acoustic data can be converted to echogram images, and these can use im-
age compression to reduce data size (Chapter 2). Some image file formats
use compression techniques that exploit the nature of images and human
perception. However, echogram quantisation (the conversion of backscatter
values into a discrete set of colours) is itself a form of lossy compression.
It is therefore important to optimise echogram colour maps for human per-
ception. In Chapter 3 we found that quantitative echograms should use
colour maps which are colourful (have a perceived variety and intensity of
colours), sequential (have monotonic lightness), and perceptually uniform
(have consistency of perceived colour contrast over their range). Whilst
all the traditional fisheries acoustic colour maps tested are colourful, none
is sequential or perceptually uniform. Modern colour maps (e.g. Viridis)
have been specifically designed for colour contrast consistency, accessibil-
ity for viewers with red-green colour-blindness, and legibility when printed
in monochrome. Fisheries acousticians rely on echograms for visualisation
of acoustic data, but these are often perceptually suboptimal. Our paper,
Colour maps for fisheries acoustic echograms (R. E. Blackwell et al., 2019)
has gone some way to addressing this problem, with software, training and
practice all now beginning to change.

Simple echograms are useful for presenting single frequency acoustic data,
but we often want to compare multi-frequency data. In these cases, it is
common to present echograms side-by-side. It would be more convenient if
we could take a data fusion approach, mapping multiple signals into a com-
bined pseudo-coloured composite image. Colour composite echograms have
been used to combine multi-frequency fisheries acoustic data (e.g. Cochrane
et al., 1991; Jech and Michaels, 2006; Ross, Keister and Lara-Lopez, 2013),
but previous work does not consider perceptual uniformity. Based on the
work in Chapter 3, we have started to extend the method into two and
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three dimensions by finding large squares and cubes in CIELAB space (see
Appendix C). These squares and cubes can then be used as colour spaces to
plot two- and three-dimensional data respectively. Early results have been
used to visualise krill swarms (e.g. Figure 7.1), but additional work is re-
quired to refine and evaluate this approach. A further problem with current
echograms is that, whilst we treat them as images, they are not geometri-
cally accurate or drawn to scale. We suggest that echogram visualisation is
a topic worthy of further research.

Figure 7.1: 38 and 120 kHz echograms shown side by side (top) and com-
bined as a colour composite echogram and legend (bottom).

Having shown that generic compression and image compression algorithms
do not provide sufficient compression ratios for acoustic data transmission,
Chapter 4 considered summarisation of fisheries acoustic data from the
Western Core Box (a survey originally designed to study Antarctic krill at
South Georgia). If ground truth had already been available, then we could
have simply machine-learned a compressor, but without ground truth, it is
difficult to know which aspects of acoustic data are important. Therefore,
we assessed correlation between Echometrics and independent environmen-
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tal indices, reasoning that those Echometrics that show strongest correlation
are more descriptive. There is a strong correlation between abundance and
traditional krill density metrics (𝑟 = 0.83, 𝑝 < 0.01), suggesting that it
may be a useful and parsimonious proxy. Location, a measure of the cen-
tre of mass of acoustic backscatter, correlates with chlorophyll (𝑟 = −0.7,
𝑝 < 0.01) and may therefore help to describe patchiness and predator/prey
interactions. Active acoustics are usually used for species specific abun-
dance surveys, but our results show that Echometrics can be more easily
computed and provide concise, useful, generic ecosystem descriptors. In-
deed, more variability in WCB acoustic data is explained by measures of
distribution such as location (centre of mass of acoustic backscatter) than
abundance. Given that distribution and patchiness of animals is of scientific
interest (e.g. Tarling et al., 2009), it is perhaps surprising that these metrics
are not more widely used.

Variation in survey timing of the Western Core Box (the survey has typically
been earlier in recent years), as well as a lack of data makes interannual
comparison difficult. The ecosystem is dominated by Antarctic krill and
the local population sees an increase due to transport of animals from the
Antarctic Peninsula (Murphy et al., 2007, 2012). Mooring data provides
some insight into the timing of krill arrival (Saunders et al., 2007), but
increased spatial and temporal sampling are required to fully understand
the interannual and intra-annual population variability.

When we calculated the Echometrics, we also demonstrated how important
it is to remove noise during processing of backscatter (Section 4.6.2). Acous-
tic data processing is typically undertaken by experts using graphical tools.
Tasks such as the detection and removal of seabed reflections are partic-
ularly challenging to automate, but we use machine learning classifiers to
show how unsupervised methods are becoming possible. Aliased seabed is
a corruption caused by acoustic reflections from the seabed. Aliased seabed
detection and removal is an example of an acoustic processing step that is
currently undertaken manually. In Chapter 5, we used machine learning
techniques and a conventional algorithm to detect aliased seabed in single
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frequency, split-beam echosounder data without the need for bathymetry.

In Chapter 3, we considered echograms optimised for human perception,
but we need to stop relying on echogram interpretation and realise the po-
tential of computational approaches. Manual scrutinisation of echograms
is subjective and confounds reproducible results. Different fisheries acousti-
cians will make different judgements regarding echogram segmentation and
classification. As the data increase in resolution and complexity, the human
vision system may not be able to discern nuances in the data. Studies of
apophenia in psychology demonstrate that humans see patterns when there
are none (Steyerl, 2016). In the future, machine learning approaches are
likely to be more consistent and effective than human scrutinisation.

Traditional, manual echogram scrutinisation is laborious and impractical
for large scale data analysis. Automated methods can be used to reduce
workload and ultimately replace human input, but challenges remain. The
aliased seabed detector that we developed has proven to be useful how-
ever, the very low signal to noise ratio in unprocessed acoustic data makes
accurate and reliable seabed reflection removal essential (Chapter 4.6.2).
Consequently, we still manually check results. Larger labelled data sets
are required from more vessels, more instruments and more ocean areas be-
fore such algorithms can be fully machine-learned, automated and trusted.
These datasets are only just becoming available (e.g. Brautaset et al., 2020).

Machine learning can be used for acoustic data classification, but fisheries
acousticians tend to be wary of black box approaches, preferring explainable
algorithms (Chapter 5). The use of machine learning in fisheries acoustics
has hitherto been confined to data that have been preprocessed (for example
to classify species type, e.g. Fallon, Fielding and Fernandes, 2016; Robotham
et al., 2010). However, the success of deep neural networks (DNN) and
convolutional neural networks (CNN) in domains including image processing
suggest that machine learning could be exploited further to classify raw,
unprocessed acoustic data.

A key problem for the application of machine learning to fisheries acoustic
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data is the lack of large, labelled data sets that can be used for training
and evaluation. Whilst large acoustic data sets are now being assembled
(Wall, Jech and McLean, 2016), classification for labelling is still a man-
ual, subjective process. One of the most troublesome problems for fisheries
acoustic surveys is still the acquisition of ground truth data (McClatchie et
al., 2000).

Split-beam angle data are often discarded during fisheries acoustic data pro-
cessing. Whilst Simrad EK60 split-beam angle data are noisy, the results
in Chapter 5 demonstrate their utility for detecting aliased seabed. Classi-
fication improved when split-beam angle data was included in our training
data. Machine learning algorithms can often perform well in the presence
of noise, and these results suggest that split-beam angle data contain addi-
tional discriminatory information.

When removing noise from echograms for biomass estimates, a replacement
value of −999 dB is commonly used as a precautionary measure to rep-
resent “empty water”, but this value never occurs in raw data. The cali-
brated acoustic data examined in this thesis never contain samples less than
−247 dB prior to noise removal. The most commonly occurring 𝑆𝑣 value
is −85 dB (𝑝 = 0.03) in 38 kHz data and −79 dB (𝑝 = 0.02) in 120 kHz
data. It would be interesting to repeat the analysis replacing noise using
a maximum likelihood estimate instead of −999 dB, thus better preserving
the statistical distribution of the data.

Whilst standard methods exist for acoustic data preprocessing (e.g. for
CCAMLR surveys, Watkins et al., 2004), results are often dependent on
choices made by the researcher and the particular software employed. It is
true that different surveys demand different treatment of data, but these
differences make it hard to compare processed data sets, and standard prod-
ucts would be helpful. In other disciplines such as satellite remote sensing,
researchers typically work with data that is supplied ortho-corrected, cal-
ibration corrected and converted to convenient data formats, not the raw
data from the instrument (e.g. see the European Space Agency Sentinel-
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1 SAR Technical documentation3). A similar approach could be used in
fisheries acoustics.

Many fisheries acoustic data processing algorithms have analogues in im-
age processing (e.g. transient noise removal is a median filter). This thesis
borrowed liberally from image processing practice (e.g. the use of interac-
tive graphics software to inspect echograms, and the application of Otsu’s
method (Otsu, 1979) to improve image segmentation). There is a huge liter-
ature in image processing and more opportunities to repurpose algorithms,
software and techniques for fisheries acoustics.

The RAPIDKRILL system demonstrates that acoustic data can be sum-
marised and transmitted to land stations in real-time for scientific reporting
purposes (Chapter 6). The current system is a bench-based proof of con-
cept (TRL 4) that allows rapid experimentation and proves principles, but
reliability and production engineering are required before it can be deployed
onboard fishing vessels or marine autonomous vehicles.

Whilst PCs are typically used to control echosounders, we have shown that
system-on-chip computers could be smaller, cheaper, lower-powered alterna-
tives (Chapter 6). The RAPIDKRILL system used a Raspberry Pi computer
which is much smaller than a PC (85 mm × 56 mm × 17 mm) and uses less
than 20% of the electrical power. Unfortunately, integration is still ham-
pered by restrictive license terms, with some vendors requiring Windows
PCs using proprietary, closed-source software.

For RAPIDKRILL, we selected a Raspberry Pi computer for expediency,
low cost, familiarity and wide availability, however other computers with
different specifications could also be considered. Many acoustic data process-
ing algorithms operate on matrices and could be parallelised using Graphics
Processing Units (GPU). Field Programmable Gate Arrays (FPGA) could
be used for specialised operations. In the future, it may be possible to work
with echosounder manufacturers to embed computational capacity within

3Sentinel-1 SAR Technical Guide https://sentinel.esa.int/web/sentinel/technical-
guides/sentinel-1-sar, accessed April 2020.
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the echosounder instrument itself.

The Python programming language has become popular for data science
and there is much interest in building Python software for acoustic data
processing (as evidenced by discussion groups at conferences such as ICES,
2018 and the development of libraries such as Echopype and Pyecholab).
However, in Chapter 6 we showed that the Julia programming language can
generate faster, more efficient code and may be more suitable for developing
embedded scientific applications.

Big data analysis has been recognised as an opportunity for marine science
(Bakker et al., 2020). Unsupervised data processing algorithms could en-
able large scale processing of fisheries acoustic data sets. Large quantities
of acoustic data exist but standard file and metadata formats (e.g. Mc-
Quinn et al., 2005; ICES, 2013; Macaulay and Peña, 2018) have not yet
been widely adopted, and not all data are readily available online (Wall,
Jech and McLean, 2016). Many of the computations in fisheries acoustics
are inherently parallel, with data being partitioned independently by pings,
transects or statistical bins. In other disciplines, high performance cloud
computing infrastructure has allowed researchers to undertake massively
parallel, resource intensive computations without having to invest in hard-
ware (Lee et al., 2012). Graphics Processing Units (GPU) such as those
provided by Nvidia allow massive parallelisation of 32 bit operations (Fung
and Mann, 2005). Neither cloud computing nor GPU computing has yet
been widely exploited for fisheries acoustic data processing and is a future
research opportunity.

Marine autonomous vehicles offer the promise of wider spatial and tempo-
ral sampling and are being considered for future Western Core Box surveys.
Autonomous surface vehicles such as the Saildrone can be equipped with
scientific echosounders (e.g. Mordy et al., 2017), and a derivative of RAPID-
KRILL (Chapter 6) could be used to transmit summary data via a satellite
link. With miniaturisation and marinisation, the technology could also be
deployed on autonomous underwater vehicles.
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This thesis began with the question: “Can we find acoustic data com-
pression and summarisation algorithms that could be deployed alongside
echosounders on marine autonomous vehicles, to deliver real-time ecosys-
tem indicators?”. It ends with an innovative hardware and software system
(RAPIDKRILL) that processes echosounder data in real-time and relays
summary metrics via a low-cost Iridium satellite link. Whilst the system
is currently only a prototype, it demonstrates how real-time acoustic data
summaries could make a practical contribution to marine ecosystems mon-
itoring and management.
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Appendix A

The sonar equation for Simrad
EK60 data

In this thesis, volume backscattering coefficient (𝑆𝑣; dB re 1 𝑚−1) was
calculated using (A.1), with symbols defined in Table A.1. This equation is
a derivation of the SONAR equation (Urick, 1967) arranged specifically for
Simrad EK601 power measurements.

𝑆𝑣(𝑅, 𝑃𝑟) = 𝑃𝑟 + 20 log10 𝑅 + 2𝛼𝑟 − 10 log10
𝑃𝑡𝐺2

0𝜆2

16𝜋2 − 10 log10
𝑐𝜏𝜓

2 − 2𝑠𝑎𝑐
(A.1)

1Ex60 Power, Power to Sv and TS, Echoview Help file 10.0.38 for Echoview 10.0.257,
https://tinyurl.com/y28sn3lg, accessed September 2019.
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Table A.1: Symbols, terms and units.

Symbol Description Units
𝑟 Range 𝑚
𝑅 Corrected range 𝑚
𝑃𝑟 Received power dB re 1 W
𝑃𝑡 Transmitted power W
𝛼 Absorption coefficient dB/m
𝐺0 Transducer peak gain Non-dimensional
𝜆 Wavelength (𝜆 = 𝑐

𝑓 ) m
𝑓 Frequency Hz
𝑐 Sound speed 𝑚𝑠−1

𝜏 Transmit pulse duration s
𝜓 Equivalent Two-way beam angle Steradians
𝑆𝑎𝑐 Correction factor, determined during calibration dB re 1𝑚−1

𝑆𝑣 Volume backscaterring strength dB re 1𝑚−1

136



Appendix B

Western Core Box calibration
corrections

Calibration corrections (𝑆𝑎𝑐) were determined annually using standard
sphere techniques (Demer et al., 2015). Sound speed (𝑐) and absorption
(𝛼) were determined from cruise CTD stations undertaken during each
cruise (Francois and Garrison, 1982), averaged over the top 250 m of the
water column. The calibration corrections used for Western Core Box data
are listed in Table B.1.
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Table B.1: Western Core Box survey calibration correction parameters for
38 and 120 kHz data by year. 𝑐 is the speed of sound in seawater, 𝛼 is
the absorption coefficient, 𝐺0 is the transducer gain and 𝑆𝑎𝑐 the calibration
correction.

Season Cruise 𝑐 𝛼38 𝐺038 𝑆𝑎𝑐38 𝛼120 𝐺0120 𝑆𝑎𝑐120
2003 JR82 1456 0.0104 24.19 -0.07 0.02793 22.43 -0.42
2003 JR82 1456 0.0104 24.19 -0.07 0.02793 22.43 -0.42
2004 JR96 1461 0.01012 24.18 -0.61 0.02648 21.25 -0.42
2005 JR116 1460 0.01014 24.14 -0.58 0.02665 20.23 -0.45
2006 JR140 1461 0.01017 24.24 -0.64 0.02683 21.31 -0.38
2007 JR162 1462 0.01014 24.07 -0.63 0.02683 21.31 -0.4
2009 JR188 1462 0.01014 23.89 -0.6 0.02683 22.16 -0.39
2010 JR228 1462 0.01014 26 -0.52 0.02683 21.7 -0.43
2011 JR245 1459 0.010396 25.62 -0.51 0.02868 22.09 -0.4
2012 JR260 1456.04 0.01043 25.51 -0.52 0.027516 22.15 -0.41
2013 JR280 1462 0.010072 25.71 -0.51 0.028156 22.17 -0.42
2014 JR291 1453.57 0.010435 25.53 -0.49 0.027352 21.79 -0.45
2015 JR304 1452.94 0.010425 25.65 -0.54 0.027207 23.29 -0.45
2016 JR15002 1452 0.010416 25.66 -0.55 0.026998 23.38 -0.29
2017 JR16003 1451.38 0.010390 25.72 -0.52 0.026844 23.72 -0.27
2018 JR17002 1455.79 0.010456 25.66 -0.52 0.027872 23.4 -0.24
2019 DY098 1455.32 0.010461 25.94 -0.64 0.027767 27.07 -0.41
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Appendix C

Colour composite echograms

C.1 Introduction
In this appendix, we outline a method for finding two- and three-dimensional
perceptually uniform colour spaces where all constituent colours are con-
tained within the sRGB colour gamut. These colour spaces can be used to
construct colour composite echograms combining multi-frequency acoustic
data such as that shown in Figure 7.1. This work builds on the methods in
Chapter 3 and is an intriguing future research direction.

C.2 Method
An echogram is a matrix of signal values indexed by depth or range and
along-track distance. When combining echograms, we require that they
share common axes and if necessary, we reproject, resample or interpolate
data to achieve this. We denote the combined multi-dimensional echogram
data as 𝑋(𝑖, 𝑗, 𝑘), where 𝑖 is the range index, 𝑗 the along-track distance
index and 𝑘 the individual echogram index. We map 𝑋(𝑖, 𝑗, 𝑘) to pixels
𝑐(𝑖, 𝑗) to form a digital image.

If our multi-dimensional echogram has three dimensions (𝑘 = {1, 2, 3}) then
we could treat CIELAB as a vector space, and naively map each k in to 𝐿∗,
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𝑎∗ and 𝑏∗ respectively to find colours whose distances in CIELAB space
are proportional to distances in measurement space. Unfortunately, not all
combinations of 𝐿∗, 𝑎∗ and 𝑏∗ can be displayed or printed and so extreme
values become saturated. In order to determine the colour gamut (the full
range of colours available on a device), we generated all combinations of
24-bit sRGB colours (𝑟 ∈ {0, 1, ..255}, 𝑔 ∈ {0, 1, ..255}, 𝑏 ∈ {0, 1, ..255})
and converted them to CIELAB using the PerceptualColourMaps.jl software
library1 (Figure C.1).

Figure C.1: The sRGB colour gamut plotted in CIELAB space under D65
illumination (courtesy Michael Horvath, Christoph Lipka, CC BY-SA https:
//creativecommons.org/licenses/by-sa/4.0).

1https://github.com/peterkovesi/PerceptualColourMaps.jl, accessed April 2020.
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To stay within the colour gamut we must transform coordinates into a sub-
space within CIELAB. In three-dimensional geometry, coordinate transfor-
mations can be expressed as a matrix. Applying this to CIELAB space,
we have scaling (C.1), rotation around the 𝑎∗ axis (C.2), rotation around
the 𝑏∗ axis (C.3), rotation around the 𝐿∗ axis (C.4) and finally, transla-
tion (C.5). We would like to find large cuboids within the gamut and map
X(i,j,k) into that cuboid’s vector space. If each of the three dimensions in
𝑘 is of equal perceptual importance, then we need to find a cube. For two
dimensional echograms (𝑘 = {1, 2}), we must find a rectangle whose edges
all lie within the gamut. If each of the two dimensions in 𝑘 is of equal
perceptual importance, then we need to find a square.

𝑆 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(C.1)

𝑅𝑥 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 cos 𝜃𝑥 − sin 𝜃𝑥 0
0 sin 𝜃𝑥 cos 𝜃𝑥 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(C.2)

𝑅𝑦 =
⎛⎜⎜⎜⎜⎜⎜
⎝

cos 𝜃𝑦 0 sin 𝜃𝑦 0
0 1 0 0

− sin 𝜃𝑦 0 cos 𝜃𝑦 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(C.3)

𝑅𝑧 =
⎛⎜⎜⎜⎜⎜⎜
⎝

cos 𝜃𝑧 − sin 𝜃𝑧 0 0
sin 𝜃𝑧 cos 𝜃𝑧 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(C.4)
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𝑇 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

⎞⎟⎟⎟⎟⎟⎟
⎠

(C.5)

𝑀 = 𝑇 ⋅ 𝑅𝑥 ⋅ 𝑅𝑦 ⋅ 𝑅𝑧 ⋅ 𝑆 (C.6)

Where only one dimension of 𝑘 relates to intensity, the cuboid, cube, rect-
angle or square can be aligned with one axis parallel to 𝐿∗. Where all
dimensions in 𝑘 include an intensity component, we require that the diago-
nal of the square or rectangle aligns with 𝐿∗.

We search for rectangles and squares with the largest areas and cuboids
and cubes with the largest volumes. We generate candidate geometries in
CIELAB space and test whether they fall within the gamut. To make the
computation tractable, we limit 𝐿∗, 𝑎∗ and 𝑏∗ to integer values.

C.3 Results
The sRGB colour gamut extent measured in CIELAB space was found to
be 0 < 𝐿∗ < 100.00, −86.18 < 𝑎∗ < 98.23 and −107.86 < 𝑏∗ < 94.48.
Thus a naive transformation from 𝑋(𝑖, 𝑗, 𝑘) into 𝐿∗, 𝑎∗ and 𝑏∗ is given by
𝑡𝑥 = 0, 𝑡𝑦 = 0, 𝑡𝑧 = 0, 𝜃𝑥 = 0, 𝜃𝑦 = 0, 𝜃𝑧 = 0, 𝑠𝑥 = 100, 𝑠𝑦 = 98 and
𝑠𝑧 = 94.

The largest square whose diagonal aligns with the grey line was found to
be described by 𝑡𝑥 = 0, 𝑡𝑦 = 0, 𝑡𝑧 = 0, 𝜃𝑥 = 280, 𝜃𝑦 = 0, 𝜃𝑧 = −45, 𝑠𝑥 =
71, 𝑠𝑦 = 71 and 𝑠𝑧 = 0. This can be used to construct two-dimensional
echograms where each dimension contributes equally to luminance.

The largest cube whose diagonal aligns with the grey line was found to be
described by 𝑡𝑥 = 16, 𝑡𝑦 = 0, 𝑡𝑧 = 0, 𝜃𝑥 = 305, 𝜃𝑦 = 35, 𝜃𝑧 = −45, 𝑠𝑥 = 49,
𝑠𝑦 = 49 and 𝑠𝑧 = 49. This can be used to construct three-dimensional
echograms where each dimension contributes equally to luminance.
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Appendix D

Western Core Box
supplementary data

Table D.1 lists the Western Core Box survey transects used in our analyses.

Table D.1: List of Western Core Box survey transects with begin and end
times in Universal Time (UTC).

Year Transect Begin End

2003 2003wcbjr82_1_1 2003-02-13T08:10:00 2003-02-13T12:53:00
2003 2003wcbjr82_1_2 2003-02-13T14:07:00 2003-02-13T18:25:00
2003 2003wcbjr82_2_1 2003-02-14T08:05:00 2003-02-14T12:27:00
2003 2003wcbjr82_2_2 2003-02-14T13:39:00 2003-02-14T18:10:00
2003 2003wcbjr82_3_1 2003-02-15T08:09:00 2003-02-15T11:42:00
2003 2003wcbjr82_4_1 2003-02-16T08:11:00 2003-02-16T10:52:00
2003 2003wcbjr82_4_2 2003-02-16T11:30:00 2003-02-16T14:01:00
2004 2004wcbjr96_1_1 2004-01-08T16:45:00 2004-01-08T21:04:00
2004 2004wcbjr96_1_2 2004-01-08T09:10:00 2004-01-08T13:51:00
2004 2004wcbjr96_2_1 2004-01-09T10:00:00 2004-01-09T14:28:00
2004 2004wcbjr96_2_2 2004-01-09T16:17:00 2004-01-09T20:32:00
2004 2004wcbjr96_4_2 2004-01-12T18:38:00 2004-01-12T21:54:00
2004 2004wcbjr96_3_1 2004-01-16T07:00:00 2004-01-16T11:24:00
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2004 2004wcbjr96_3_2 2004-01-16T12:40:00 2004-01-16T16:53:00
2004 2004wcbjr96_4_1 2004-01-16T17:18:00 2004-01-16T22:14:00
2005 2005wcbjr116_1_1 2005-01-06T11:20:00 2005-01-06T15:44:00
2005 2005wcbjr116_1_2 2005-01-06T17:02:00 2005-01-06T19:40:00
2005 2005wcbjr116_2_1 2005-01-07T08:30:00 2005-01-07T12:59:00
2005 2005wcbjr116_2_2 2005-01-07T14:09:00 2005-01-07T18:42:00
2005 2005wcbjr116_3_1 2005-01-08T19:02:00 2005-01-08T23:24:00
2005 2005wcbjr116_3_2 2005-01-10T06:45:00 2005-01-10T11:05:00
2005 2005wcbjr116_4_1 2005-01-10T11:57:00 2005-01-10T16:22:00
2005 2005wcbjr116_4_2 2005-01-10T17:09:00 2005-01-10T21:06:00
2006 2006wcbjr140_1_1 2005-12-29T08:56:00 2005-12-29T13:35:00
2006 2006wcbjr140_1_2 2005-12-29T14:49:00 2005-12-29T19:08:00
2006 2006wcbjr140_2_1 2005-12-30T09:10:00 2005-12-30T13:42:00
2006 2006wcbjr140_2_2 2005-12-30T15:23:00 2005-12-30T19:45:00
2006 2006wcbjr140_3_1 2005-12-31T09:00:00 2005-12-31T13:26:00
2006 2006wcbjr140_3_2 2005-12-31T14:47:00 2005-12-31T19:10:00
2006 2006wcbjr140_4_1 2006-01-01T09:18:00 2006-01-01T13:49:00
2006 2006wcbjr140_4_2 2006-01-01T14:27:00 2006-01-01T18:46:00
2007 2007wcbjr162_1_1 2006-12-25T07:00:00 2006-12-25T11:23:00
2007 2007wcbjr162_2_2 2006-12-26T17:56:00 2006-12-26T21:45:00
2007 2007wcbjr162_3_1 2006-12-27T07:00:00 2006-12-27T11:21:00
2007 2007wcbjr162_3_2 2006-12-27T12:30:00 2006-12-27T16:47:00
2007 2007wcbjr162_4_1 2006-12-27T17:24:00 2006-12-27T21:44:00
2007 2007wcbjr162_4_2 2006-12-28T07:00:00 2006-12-28T11:20:00
2009 2009wcbjr188_1_1 2008-12-31T09:05:00 2008-12-31T13:46:00
2009 2009wcbjr188_1_2 2008-12-31T14:55:00 2008-12-31T19:15:00
2009 2009wcbjr188_2_1 2009-01-01T09:03:00 2009-01-01T13:41:00
2009 2009wcbjr188_2_2 2009-01-01T14:59:00 2009-01-01T19:30:00
2009 2009wcbjr188_3_1 2009-01-02T09:00:00 2009-01-02T13:45:00
2009 2009wcbjr188_3_2 2009-01-02T14:45:00 2009-01-02T19:06:00
2009 2009wcbjr188_4_1 2009-01-03T06:30:00 2009-01-03T10:25:00
2009 2009wcbjr188_4_2 2009-01-03T11:01:00 2009-01-03T15:43:00
2010 2010wcbjr228_1_1 2009-12-20T08:00:00 2009-12-20T12:37:00
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2010 2010wcbjr228_1_2 2009-12-20T13:42:00 2009-12-20T17:59:00
2010 2010wcbjr228_2_1 2009-12-21T07:58:00 2009-12-21T12:38:00
2010 2010wcbjr228_2_2 2009-12-21T13:45:00 2009-12-21T18:02:00
2010 2010wcbjr228_3_1 2009-12-22T07:46:00 2009-12-22T12:17:00
2010 2010wcbjr228_3_2 2009-12-22T13:21:00 2009-12-22T17:47:00
2010 2010wcbjr228_4_1 2009-12-23T07:40:00 2009-12-23T12:13:00
2010 2010wcbjr228_4_2 2009-12-23T12:59:00 2009-12-23T17:38:00
2011 2011wcbjr245_1_1 2010-12-26T08:58:00 2010-12-26T13:30:00
2011 2011wcbjr245_1_2 2010-12-26T14:40:00 2010-12-26T19:00:00
2011 2011wcbjr245_2_1 2010-12-27T09:26:00 2010-12-27T13:56:00
2011 2011wcbjr245_2_2 2010-12-27T15:17:00 2010-12-27T19:42:00
2011 2011wcbjr245_3_1 2010-12-28T09:05:00 2010-12-28T13:34:00
2011 2011wcbjr245_3_2 2010-12-28T14:41:00 2010-12-28T18:55:00
2011 2011wcbjr245_4_1 2010-12-30T09:00:00 2010-12-30T13:35:00
2011 2011wcbjr245_4_2 2010-12-30T14:50:00 2010-12-30T19:24:00
2012 2012wcbjr260_1_1 2012-01-02T09:00:00 2012-01-02T13:45:00
2012 2012wcbjr260_1_2 2012-01-02T14:54:00 2012-01-02T19:12:00
2012 2012wcbjr260_2_1 2012-01-03T09:00:00 2012-01-03T13:41:00
2012 2012wcbjr260_2_2 2012-01-03T14:42:00 2012-01-03T19:03:00
2012 2012wcbjr260_3_1 2012-01-04T09:00:00 2012-01-04T13:36:00
2012 2012wcbjr260_3_2 2012-01-04T14:48:00 2012-01-04T19:07:00
2012 2012wcbjr260_4_1 2012-01-05T09:00:00 2012-01-05T13:40:00
2012 2012wcbjr260_4_2 2012-01-05T14:17:00 2012-01-05T18:57:00
2013 2013wcbjr280_1_1 2012-12-01T09:01:00 2012-12-01T13:44:00
2013 2013wcbjr280_1_2 2012-12-01T14:57:00 2012-12-01T19:17:00
2013 2013wcbjr280_2_1 2012-12-02T09:00:00 2012-12-02T13:46:00
2013 2013wcbjr280_2_2 2012-12-02T14:54:00 2012-12-02T19:17:00
2013 2013wcbjr280_3_1 2012-12-03T09:00:00 2012-12-03T13:43:00
2013 2013wcbjr280_3_2 2012-12-03T15:00:00 2012-12-03T19:19:00
2013 2013wcbjr280_4_1 2012-12-04T09:30:00 2012-12-04T14:09:00
2013 2013wcbjr280_4_2 2012-12-04T14:49:00 2012-12-04T19:24:00
2014 2014wcbjr291_1_1 2013-12-09T08:00:00 2013-12-09T12:31:00
2014 2014wcbjr291_1_2 2013-12-09T13:40:00 2013-12-09T18:00:00
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2014 2014wcbjr291_2_1 2013-12-10T08:00:00 2013-12-10T12:29:00
2014 2014wcbjr291_2_2 2013-12-10T13:40:00 2013-12-10T18:00:00
2014 2014wcbjr291_3_1 2013-12-11T08:30:00 2013-12-11T13:02:00
2014 2014wcbjr291_3_2 2013-12-11T14:03:00 2013-12-11T18:28:00
2014 2014wcbjr291_4_1 2013-12-12T08:05:00 2013-12-12T12:42:00
2014 2014wcbjr291_4_2 2013-12-12T13:13:00 2013-12-12T17:45:00
2015 2015wcbjr304_1_1 2014-12-08T09:06:00 2014-12-08T13:49:00
2015 2015wcbjr304_1_2 2014-12-08T15:00:00 2014-12-08T19:21:00
2015 2015wcbjr304_2_1 2014-12-09T09:41:00 2014-12-09T14:28:00
2015 2015wcbjr304_2_2 2014-12-09T15:32:00 2014-12-09T19:58:00
2015 2015wcbjr304_3_1 2014-12-10T09:00:00 2014-12-10T13:36:00
2015 2015wcbjr304_3_2 2014-12-10T14:37:00 2014-12-10T18:46:00
2015 2015wcbjr304_4_1 2014-12-11T09:00:00 2014-12-11T13:37:00
2015 2015wcbjr304_4_2 2014-12-11T14:12:00 2014-12-11T18:56:00
2016 2016wcbjr15002_1_1 2015-12-03T09:07:00 2015-12-03T13:30:00
2016 2016wcbjr15002_1_2 2015-12-03T14:45:00 2015-12-03T19:04:00
2016 2016wcbjr15002_2_1 2015-12-04T09:30:00 2015-12-04T14:07:00
2016 2016wcbjr15002_2_2 2015-12-04T15:10:00 2015-12-04T19:30:00
2016 2016wcbjr15002_3_1 2015-12-05T09:06:00 2015-12-05T13:30:00
2016 2016wcbjr15002_3_2 2015-12-05T15:08:00 2015-12-05T19:12:00
2016 2016wcbjr15002_4_1 2015-12-06T09:10:00 2015-12-06T13:40:00
2016 2016wcbjr15002_4_2 2015-12-06T14:25:00 2015-12-06T18:59:00
2017 2017wcbjr16003_1_1 2016-12-20T09:00:00 2016-12-20T13:41:00
2017 2017wcbjr16003_1_2 2016-12-20T14:42:00 2016-12-20T19:00:00
2017 2017wcbjr16003_2_1 2016-12-21T09:00:00 2016-12-21T13:44:00
2017 2017wcbjr16003_2_2 2016-12-21T14:44:00 2016-12-21T19:02:00
2017 2017wcbjr16003_3_1 2016-12-22T09:00:00 2016-12-22T15:56:00
2017 2017wcbjr16003_3_2 2016-12-22T17:05:00 2016-12-22T21:30:00
2017 2017wcbjr16003_4_1 2016-12-23T08:00:00 2016-12-23T13:24:00
2017 2017wcbjr16003_4_2 2016-12-23T14:09:00 2016-12-23T18:43:00
2018 2018wcbjr17002_1_1 2018-01-08T09:30:00 2018-01-08T14:06:00
2018 2018wcbjr17002_1_2 2018-01-08T15:15:00 2018-01-08T19:37:00
2018 2018wcbjr17002_2_1 2018-01-09T09:08:00 2018-01-09T13:36:00
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2018 2018wcbjr17002_2_2 2018-01-09T14:45:00 2018-01-09T19:21:00
2018 2018wcbjr17002_3_1 2018-01-10T09:00:00 2018-01-10T13:28:00
2018 2018wcbjr17002_3_2 2018-01-10T14:48:00 2018-01-10T19:08:00
2018 2018wcbjr17002_4_1 2018-01-11T09:00:00 2018-01-11T13:27:00
2018 2018wcbjr17002_4_2 2018-01-11T14:08:00 2018-01-11T18:38:00
2019 2019wcbdy098_1_1 2019-01-07T09:06:00 2019-01-07T13:47:00
2019 2019wcbdy098_1_2 2019-01-07T15:13:00 2019-01-07T21:17:00
2019 2019wcbdy098_2_1 2019-01-08T09:07:38 2019-01-08T12:34:00
2019 2019wcbdy098_2_2 2019-01-08T13:45:00 2019-01-08T18:31:00
2019 2019wcbdy098_3_1 2019-01-09T09:35:00 2019-01-09T14:55:00
2019 2019wcbdy098_3_2 2019-01-09T16:13:00 2019-01-09T20:30:00
2019 2019wcbdy098_4_1 2019-01-10T08:55:00 2019-01-10T14:01:00
2019 2019wcbdy098_4_2 2019-01-10T14:39:00 2019-01-10T19:34:00
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Appendix E

Western Core Box spatial
analysis

A key output from chapter 4 is a database of Echometrics by ping. The data
also include Global Positioning System (GPS) coordinates and bathymetry
(using data from Hogg et al., 2016) enabling various kinds of geospatial
analysis outside the scope of this thesis. As an example, Figure E.1 considers
the spatial distribution of abundance for all surveys, throughout the Western
Core Box survey area.

Regions of high abundance tend to occur on the shelf and in those transects
closest to land (Figure E.2). These results are consistent with Silk et al.
(2016) who note that the krill fishery is currently concentrated in shelf areas,
where high densities of krill are most predictable. The map appears to
show abundance concentrations over gullies and areas of rapid change in
bathymetry (Figure E.1).
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Figure E.1: Abundance along transect lines. Regions of high abundance
are shown on a 1 km2 grid over SGBD baythmetry using a South Georgia
Lambert projection.
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Figure E.2: Comparison of transect lines, using (a) abundance and (b)
location. The boxes show the first quartile, median and third quartile. o
marks the mean. × marks the mean computed in the linear domain.
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Appendix F

Simrad EK60 split-beam angle
anomalies

During our analysis of Simrad EK60 echosounder data, we repeatedly saw
peaks in the histograms of split-beam angle at data values -96, -32, 32 and
96 (measurements in raw, signed 8 bit integers), see Figure F.1. These
appeared to be randomly distributed spatially. We saw the same effect in
both along-ship and athwart-ship data for 38 kHz and 120 kHz.

We looked at data from three different EK60 instruments on three different
research vessels, and the effect was seen in all three. We did not observe
the effect in Simrad EK80 data.

We raised the issue with Simrad and they acknowledged the problem. It
seems suspicious that these values are 64 apart given the 8-bit integer rep-
resentation and a bug in the analogue to digital conversion is suspected.

Future researchers should also be aware that there is a recently discovered
non-linearity in the Simrad EK60 instrument documented by De Robertis
et al. (2019).
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Figure F.1: Histogram of athwartship angle data, 38 kHz, RRS James Clark
Ross.
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Appendix G

The impact of averaging
fisheries acoustic data

G.1 Introduction
Data binning (sometimes called bucketing) partitions an ordered set of sam-
ples 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} into 𝑘 bins and presents a summary statistic for
each bin 𝑌 = { ̄𝑦1, ̄𝑦2, ... ̄𝑦𝑘}. Data binning is used extensively in fisheries
acoustic data processing, for at least four reasons:

1. It reduces the resolution and size of the data (𝑘 < 𝑛), making it easier
to store on disk and faster to load and process;

2. It can reduce the effect of noise extrema by smoothing the data (espe-
cially if using the median as a summary statistic) (Ryan et al., 2015);

3. It helps to address the linearity principle which requires a minimum
number of samples to ensure stochasticity of animal orientation (Sim-
monds and MacLennan, 2005, p. p191);

4. It creates “elementary distance sampling units” (EDSU) where sam-
ples are averaged to reduce the effects of aliasing and local variability
(Simmonds and MacLennan, 2005, p. p324).
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Bin sizes are often selected based on an EDSU distance measure, e.g. 500 m.
If the ship is travelling at 10 knots and the inter ping time 𝐼𝑇 = 2 s then
each bin should include 50 samples. In practice, it is difficult to maintain
a constant 10 knots and bin sizes are variable. Ideally bins should have
equal numbers of samples, so that 𝑋̄ = ̄𝑌 . Data binning is known to be a
potential cause of error in statistical analyses (Towers, 2014). Here we show
that problems can be substantial when working with fisheries acoustic data.

G.2 Method
Consider an 80.25 km acoustic transect, with backscattering samples (𝑆𝑣)
recorded every 10 m. Set each of the 8025 samples to −999 dB, except pings
7999 and 8025 which are set to −60 dB.

Calculate the mean 𝑆𝑣 for all samples. Repeat for 250 m bins and 500 m
bins.

Repeat the analysis discarding the last 0.25 km partial EDSU.

G.3 Results
Table G.1: The effect of varying bin size on mean volume backscattering
coefficient.

Bins Mean 𝑆𝑣 (dB)
None -96

250 m -89
500 m -86

When discarding the last 0.25 km, the result is −99 dB.

G.4 Discussion
When bins are unequal, choice of bin size made a 10 dB difference to our
results. The mean is highly sensitive to outliers, and this is especially true of
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acoustic data which has a high dynamic range (usually measured in decibels).
Although this example uses synthetic data, we see that failure to remove
noise or to include or exclude a bin with Antarctic krill, could make a large
difference to results.

Smaller data sizes are easier to work with, using less disk space, memory
and computational capacity. In the early days of echosounders, data was
processed with primitive computers and lack of computational resources
was a legitimate concern. These days, computers have large amounts of
memory (16 GB is typical): an 80 km transect recorded to 1000 m might
yield approximately 1 GB of data, well within the capability of modern
computers.

The linearity principle can be accommodated by blurring data, perhaps
using convolution from image processing.

Studies should consider the possible effects of aliasing caused by successive
ping beams overlapping, and may wish to reduce the effects of local variabil-
ity. However, averaging over large elementary distance sampling units is a
crude solution. We suggest that computational power is now sufficient to
construct geometrically correct echograms which could allow anti-aliasing
algorithms to be developed. Maintaining data resolution throughout pre-
processing allows the sensitivity of results to subsequent averaging to be
carefully assessed.

G.5 Conclusions
Whilst there are legitimate reasons for averaging acoustic data samples, the
use of averaging should be considered carefully based on physical principles
and survey objectives. In many cases, especially when computing those
acoustic metrics measuring patchiness and distribution, it may be advanta-
geous to retain the native resolution of the data.
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Appendix H

One hundred ICES fisheries
acoustics articles

In Chapters 3 and 6, we examined one hundred journal papers matching the
search term “fisheries echogram”, published after 2009 in the ICES Journal
of Marine Science. Here is that list1:

1. Ronan Fablet, Riwal Lefort, Imen Karoui, Laurent Berger, Jacques
Massé, Carla Scalabrin, Jean-Marc Boucher, Classifying fish schools
and estimating their species proportions in fishery-acoustic surveys,
ICES Journal of Marine Science, Volume 66, Issue 6, July 2009, Pages
1136–1142, https://doi.org/10.1093/icesjms/fsp109.

2. Vasilis Trygonis, Zacharias Kapelonis, Corrections of fish school area
and mean volume backscattering strength by simulation of an omnidi-
rectional multi-beam sonar, ICES Journal of Marine Science, Volume
75, Issue 4, July-August 2018, Pages 1496–1508, https://doi.org/10.1
093/icesjms/fsy009.

3. Paul G. Fernandes, Phillip Copland, Rafael Garcia, Tudor Nicose-
vici, Ben Scoulding, Additional evidence for fisheries acoustics: small

1https://github.com/RobBlackwell/hundred-fisheries-acoustic-papers, retrieved
November 2019.
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cameras and angling gear provide tilt angle distributions and other
relevant data for mackerel surveys, ICES Journal of Marine Science,
Volume 73, Issue 8, September 2016, Pages 2009–2019, https://doi.or
g/10.1093/icesjms/fsw091.

4. David A. Demer, Rudy J. Kloser, David N. MacLennan, Egil Ona,
An introduction to the proceedings and a synthesis of the 2008 ICES
Symposium on the Ecosystem Approach with Fisheries Acoustics and
Complementary Technologies (SEAFACTS), ICES Journal of Marine
Science, Volume 66, Issue 6, July 2009, Pages 961–965, https://doi.or
g/10.1093/icesjms/fsp146.

5. Rolf J. Korneliussen, The acoustic identification of Atlantic mackerel,
ICES Journal of Marine Science, Volume 67, Issue 8, November 2010,
Pages 1749–1758, https://doi.org/10.1093/icesjms/fsq052.

6. Lars G. Rudstam, Sandra L. Parker-Stetter, Patrick J. Sullivan, David
M. Warner, Towards a standard operating procedure for fishery acous-
tic surveys in the Laurentian Great Lakes, North America, ICES Jour-
nal of Marine Science, Volume 66, Issue 6, July 2009, Pages 1391–1397,
https://doi.org/10.1093/icesjms/fsp014.

7. David N. MacLennan, Reflections on technology and science in fish-
ery research, ICES Journal of Marine Science, Volume 74, Issue 8,
September-October 2017, Pages 2069–2075, https://doi.org/10.1093/
icesjms/fsx045.

8. Susan B. Fudge, George A. Rose, Passive- and active-acoustic prop-
erties of a spawning Atlantic cod (Gadus morhua) aggregation, ICES
Journal of Marine Science, Volume 66, Issue 6, July 2009, Pages 1259–
1263, https://doi.org/10.1093/icesjms/fsp097.

9. Masahiko Furusawa, Kazuo Amakasu, The analysis of echotrace ob-
tained by a split-beam echosounder to observe the tilt-angle depen-
dence of fish target strength in situ, ICES Journal of Marine Science,
Volume 67, Issue 2, March 2010, Pages 215–230, https://doi.org/10.1
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093/icesjms/fsp246.

10. Niall G. Fallon, Sophie Fielding, Paul G. Fernandes, Classification of
Southern Ocean krill and icefish echoes using random forests, ICES
Journal of Marine Science, Volume 73, Issue 8, September 2016, Pages
1998–2008, https://doi.org/10.1093/icesjms/fsw057.

11. Ariel G. Cabreira, Martín Tripode, Adrián Madirolas, Artificial neu-
ral networks for fish-species identification, ICES Journal of Marine
Science, Volume 66, Issue 6, July 2009, Pages 1119–1129, https:
//doi.org/10.1093/icesjms/fsp009.

12. Vasilis Trygonis, Stratis Georgakarakos, E. John Simmonds, An opera-
tional system for automatic school identification on multibeam sonar
echoes, ICES Journal of Marine Science, Volume 66, Issue 5, June
2009, Pages 935–949, https://doi.org/10.1093/icesjms/fsp135.

13. Ruben Patel, Egil Ona, Measuring herring densities with one real and
several phantom research vessels, ICES Journal of Marine Science,
Volume 66, Issue 6, July 2009, Pages 1264–1269, https://doi.org/10.1
093/icesjms/fsp128.

14. Christopher Bassett, Alex De Robertis, Christopher D Wilson, Broad-
band echosounder measurements of the frequency response of fishes
and euphausiids in the Gulf of Alaska, ICES Journal of Marine Sci-
ence, Volume 75, Issue 3, May-June 2018, Pages 1131–1142, https:
//doi.org/10.1093/icesjms/fsx204.

15. G. Boyra, U. Martínez, U. Cotano, M. Santos, X. Irigoien, A. Uriarte,
Acoustic surveys for juvenile anchovy in the Bay of Biscay: abundance
estimate as an indicator of the next year’s recruitment and spatial
distribution patterns, ICES Journal of Marine Science, Volume 70,
Issue 7, November 2013, Pages 1354–1368, https://doi.org/10.1093/
icesjms/fst096.

16. Jeroen van der Kooij, Sascha M.M. Fässler, David Stephens, Lisa
Readdy, Beth E. Scott, Beatriz A. Roel, Opportunistically recorded
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acoustic data support Northeast Atlantic mackerel expansion theory,
ICES Journal of Marine Science, Volume 73, Issue 4, March/April
2016, Pages 1115–1126, https://doi.org/10.1093/icesjms/fsv243.

17. Serdar Sakınan, Ali Cemal Gücü, Spatial distribution of the Black Sea
copepod, Calanus euxinus, estimated using multi-frequency acoustic
backscatter, ICES Journal of Marine Science, Volume 74, Issue 3,
March-April 2017, Pages 832–846, https://doi.org/10.1093/icesjm
s/fsw183.

18. Olav Rune Godø, Nils Olav Handegard, Howard I. Browman, Gavin
J. Macaulay, Stein Kaartvedt, Jarl Giske, Egil Ona, Geir Huse, Espen
Johnsen, Marine ecosystem acoustics (MEA): quantifying processes
in the sea at the spatio-temporal scales on which they occur, ICES
Journal of Marine Science, Volume 71, Issue 8, October 2014, Pages
2357–2369, https://doi.org/10.1093/icesjms/fsu116.

19. Joshua M. Lawrence, Eric Armstrong, Jonathan Gordon, Susan
Mærsk Lusseau, Paul G. Fernandes, Passive and active, predator and
prey: using acoustics to study interactions between cetaceans and for-
age fish, ICES Journal of Marine Science, Volume 73, Issue 8, Septem-
ber 2016, Pages 2075–2084, https://doi.org/10.1093/icesjms/fsw013.

20. Verena M. Trenkel, Nils Olav Handegard, Thomas C. Weber, Observ-
ing the ocean interior in support of integrated management, ICES
Journal of Marine Science, Volume 73, Issue 8, September 2016, Pages
1947–1954, https://doi.org/10.1093/icesjms/fsw132.

21. Ben Scoulding, Sven Gastauer, David N. MacLennan, Sascha M. M.
Fässler, Phillip Copland, Paul G. Fernandes, Effects of variable mean
target strength on estimates of abundance: the case of Atlantic mack-
erel (Scomber scombrus), ICES Journal of Marine Science, Volume
74, Issue 3, March-April 2017, Pages 822–831, https://doi.org/10.109
3/icesjms/fsw212.

22. François Gerlotto, Sixteen lessons from a 40-year quest to understand
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the mysterious life of the grey triggerfish, ICES Journal of Marine
Science, Volume 74, Issue 9, November/December 2017, Pages 2321–
2332, https://doi.org/10.1093/icesjms/fsx086.

23. Sindre Vatnehol, Hector Peña, Nils Olav Handegard, A method to au-
tomatically detect fish aggregations using horizontally scanning sonar,
ICES Journal of Marine Science, Volume 75, Issue 5, September-
October 2018, Pages 1803–1812, https://doi.org/10.1093/icesjms/
fsy029.

24. Ian H. McQuinn, Maxime Dion, Jean-François St. Pierre, The acous-
tic multifrequency classification of two sympatric euphausiid species
(Meganyctiphanes norvegica and Thysanoessa raschii), with empirical
and SDWBA model validation, ICES Journal of Marine Science, Vol-
ume 70, Issue 3, April 2013, Pages 636–649, https://doi.org/10.1093/
icesjms/fst004.

25. Carla Scalabrin, Christian Marfia, Jean Boucher, How much fish is
hidden in the surface and bottom acoustic blind zones?, ICES Journal
of Marine Science, Volume 66, Issue 6, July 2009, Pages 1355–1363,
https://doi.org/10.1093/icesjms/fsp136.

26. Carrie C. Wall, J. Michael Jech, Susan J. McLean, Increasing the
accessibility of acoustic data through global access and imagery, ICES
Journal of Marine Science, Volume 73, Issue 8, September 2016, Pages
2093–2103, https://doi.org/10.1093/icesjms/fsw014.

27. Laurent Berger, Cyrille Poncelet, Verena M. Trenkel, A method for
reducing uncertainty in estimates of fish-school frequency response
using data from multifrequency and multibeam echosounders, ICES
Journal of Marine Science, Volume 66, Issue 6, July 2009, Pages 1155–
1161, https://doi.org/10.1093/icesjms/fsp113.

28. Takeshi Nakamura, Akira Hamano, Seasonal differences in the vertical
distribution pattern of Japanese jack mackerel, Trachurus japonicus:
changes according to age?, ICES Journal of Marine Science, Volume
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66, Issue 6, July 2009, Pages 1289–1295, https://doi.org/10.1093/ic
esjms/fsp114.

29. Sébastien Bourguignon, Laurent Berger, Carla Scalabrin, Ronan Fa-
blet, Valérie Mazauric, Methodological developments for improved
bottom detection with the ME70 multibeam echosounder, ICES Jour-
nal of Marine Science, Volume 66, Issue 6, July 2009, Pages 1015–1022,
https://doi.org/10.1093/icesjms/fsp089.

30. Espen Johnsen, Ronald Pedersen, Egil Ona, Size-dependent frequency
response of sandeel schools, ICES Journal of Marine Science, Volume
66, Issue 6, July 2009, Pages 1100–1105, https://doi.org/10.1093/ic
esjms/fsp091.

31. Gary D. Melvin, Observations of in situ Atlantic bluefin tuna (Thun-
nus thynnus) with 500-kHz multibeam sonar, ICES Journal of Ma-
rine Science, Volume 73, Issue 8, September 2016, Pages 1975–1986,
https://doi.org/10.1093/icesjms/fsw077.

32. Teunis Jansen, Kasper Kristensen, Jeroen van der Kooij, Søren Post,
Andrew Campbell, Kjell Rong Utne, Pablo Carrera, Jan Arge Jacob-
sen, Asta Gudmundssdottir, Beatriz A. Roel, Emma M. C. Hatfield,
Nursery areas and recruitment variation of Northeast Atlantic mack-
erel (Scomber scombrus), ICES Journal of Marine Science, Volume
72, Issue 6, July/August 2015, Pages 1779–1789, https://doi.org/10.1
093/icesjms/fsu186.

33. Mathieu Doray, Pierre Petitgas, Laetitia Nelson, Stéphanie Mahévas,
Erwan Josse, Lionel Reynal, The influence of the environment on the
variability of monthly tuna biomass around a moored, fish-aggregating
device, ICES Journal of Marine Science, Volume 66, Issue 6, July 2009,
Pages 1410–1416, https://doi.org/10.1093/icesjms/fsp039.

34. Tim E. Ryan, Rudy J. Kloser, Gavin J. Macaulay, Measurement and
visual verification of fish target strength using an acoustic-optical sys-
tem attached to a trawlnet, ICES Journal of Marine Science, Volume
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66, Issue 6, July 2009, Pages 1238–1244, https://doi.org/10.1093/ic
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